2,613 research outputs found

    Low rank tensor recovery via iterative hard thresholding

    Full text link
    We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to the recovery of low rank tensors of higher order from a small number of linear measurements. While the theoretical understanding of low rank matrix recovery is already well-developed, only few contributions on the low rank tensor recovery problem are available so far. In this paper, we introduce versions of the iterative hard thresholding algorithm for several tensor decompositions, namely the higher order singular value decomposition (HOSVD), the tensor train format (TT), and the general hierarchical Tucker decomposition (HT). We provide a partial convergence result for these algorithms which is based on a variant of the restricted isometry property of the measurement operator adapted to the tensor decomposition at hand that induces a corresponding notion of tensor rank. We show that subgaussian measurement ensembles satisfy the tensor restricted isometry property with high probability under a certain almost optimal bound on the number of measurements which depends on the corresponding tensor format. These bounds are extended to partial Fourier maps combined with random sign flips of the tensor entries. Finally, we illustrate the performance of iterative hard thresholding methods for tensor recovery via numerical experiments where we consider recovery from Gaussian random measurements, tensor completion (recovery of missing entries), and Fourier measurements for third order tensors.Comment: 34 page

    Trading quantum for classical resources in quantum data compression

    Get PDF
    We study the visible compression of a source E of pure quantum signal states, or, more formally, the minimal resources per signal required to represent arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor is given the identity of the input state sequence as classical information. According to the quantum source coding theorem, the optimal quantum rate is the von Neumann entropy S(E) qubits per signal. We develop a refinement of this theorem in order to analyze the situation in which the states are coded into classical and quantum bits that are quantified separately. This leads to a trade--off curve Q(R), where Q(R) qubits per signal is the optimal quantum rate for a given classical rate of R bits per signal. Our main result is an explicit characterization of this trade--off function by a simple formula in terms of only single signal, perfect fidelity encodings of the source. We give a thorough discussion of many further mathematical properties of our formula, including an analysis of its behavior for group covariant sources and a generalization to sources with continuously parameterized states. We also show that our result leads to a number of corollaries characterizing the trade--off between information gain and state disturbance for quantum sources. In addition, we indicate how our techniques also provide a solution to the so--called remote state preparation problem. Finally, we develop a probability--free version of our main result which may be interpreted as an answer to the question: ``How many classical bits does a qubit cost?'' This theorem provides a type of dual to Holevo's theorem, insofar as the latter characterizes the cost of coding classical bits into qubits.Comment: 51 pages, 7 figure

    On Optimizing Distributed Tucker Decomposition for Dense Tensors

    Full text link
    The Tucker decomposition expresses a given tensor as the product of a small core tensor and a set of factor matrices. Apart from providing data compression, the construction is useful in performing analysis such as principal component analysis (PCA)and finds applications in diverse domains such as signal processing, computer vision and text analytics. Our objective is to develop an efficient distributed implementation for the case of dense tensors. The implementation is based on the HOOI (Higher Order Orthogonal Iterator) procedure, wherein the tensor-times-matrix product forms the core routine. Prior work have proposed heuristics for reducing the computational load and communication volume incurred by the routine. We study the two metrics in a formal and systematic manner, and design strategies that are optimal under the two fundamental metrics. Our experimental evaluation on a large benchmark of tensors shows that the optimal strategies provide significant reduction in load and volume compared to prior heuristics, and provide up to 7x speed-up in the overall running time.Comment: Preliminary version of the paper appears in the proceedings of IPDPS'1

    MARS: Masked Automatic Ranks Selection in Tensor Decompositions

    Full text link
    Tensor decomposition methods are known to be efficient for compressing and accelerating neural networks. However, the problem of optimal decomposition structure determination is still not well studied while being quite important. Specifically, decomposition ranks present the crucial parameter controlling the compression-accuracy trade-off. In this paper, we introduce MARS -- a new efficient method for the automatic selection of ranks in general tensor decompositions. During training, the procedure learns binary masks over decomposition cores that "select" the optimal tensor structure. The learning is performed via relaxed maximum a posteriori (MAP) estimation in a specific Bayesian model. The proposed method achieves better results compared to previous works in various tasks
    • …
    corecore