16,727 research outputs found

    Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Full text link
    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states--the quantum states of light emitted by a laser--has immense practical importance. However, quantum mechanics imposes a fundamental limit on how well different coher- ent states can be distinguished, even with perfect detectors, and limits such discrimination to have a finite minimum probability of error. While conventional optical receivers lead to error rates well above this fundamental limit, Dolinar found an explicit receiver design involving optical feedback and photon counting that can achieve the minimum probability of error for discriminating any two given coherent states. The generalization of this construction to larger sets of coherent states has proven to be challenging, evidencing that there may be a limitation inherent to a linear-optics-based adaptive measurement strategy. In this Letter, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multi-copy quantum hypotheses (arXiv:1201.6625) and properties of coherent states. Furthermore, our construction is reusable, composable, and applicable to designing quantum-limited processing of coherent-state signals to optimize any metric of choice. As illustrative examples, we analyze the performance of discriminating a ternary alphabet, and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.Comment: 9 pages, 2 figures; v2 Minor correction

    Quantum Stopwatch: How To Store Time in a Quantum Memory

    Full text link
    Quantum mechanics imposes a fundamental tradeoff between the accuracy of time measurements and the size of the systems used as clocks. When the measurements of different time intervals are combined, the errors due to the finite clock size accumulate, resulting in an overall inaccuracy that grows with the complexity of the setup. Here we introduce a method that in principle eludes the accumulation of errors by coherently transferring information from a quantum clock to a quantum memory of the smallest possible size. Our method could be used to measure the total duration of a sequence of events with enhanced accuracy, and to reduce the amount of quantum communication needed to stabilize clocks in a quantum network.Comment: 10 + 5 pages, 3 figure

    The Role of Relative Entropy in Quantum Information Theory

    Get PDF
    Quantum mechanics and information theory are among the most important scientific discoveries of the last century. Although these two areas initially developed separately it has emerged that they are in fact intimately related. In this review I will show how quantum information theory extends traditional information theory by exploring the limits imposed by quantum, rather than classical mechanics on information storage and transmission. The derivation of many key results uniquely differentiates this review from the "usual" presentation in that they are shown to follow logically from one crucial property of relative entropy. Within the review optimal bounds on the speed-up that quantum computers can achieve over their classical counter-parts are outlined using information theoretic arguments. In addition important implications of quantum information theory to thermodynamics and quantum measurement are intermittently discussed. A number of simple examples and derivations including quantum super-dense coding, quantum teleportation, Deutsch's and Grover's algorithms are also included.Comment: 40 pages, 11 figure

    Distinguishability of States and von Neumann Entropy

    Get PDF
    Consider an ensemble of pure quantum states |\psi_j>, j=1,...,n taken with prior probabilities p_j respectively. We show that it is possible to increase all of the pairwise overlaps || i.e. make each constituent pair of the states more parallel (while keeping the prior probabilities the same), in such a way that the von Neumann entropy S is increased, and dually, make all pairs more orthogonal while decreasing S. We show that this phenomenon cannot occur for ensembles in two dimensions but that it is a feature of almost all ensembles of three states in three dimensions. It is known that the von Neumann entropy characterises the classical and quantum information capacities of the ensemble and we argue that information capacity in turn, is a manifestation of the distinguishability of the signal states. Hence our result shows that the notion of distinguishability within an ensemble is a global property that cannot be reduced to considering distinguishability of each constituent pair of states.Comment: 18 pages, Latex, 2 figure

    Classical, quantum and total correlations

    Get PDF
    We discuss the problem of separating consistently the total correlations in a bipartite quantum state into a quantum and a purely classical part. A measure of classical correlations is proposed and its properties are explored.Comment: 10 pages, 3 figure
    corecore