330 research outputs found

    Fast watermarking of MPEG-1/2 streams using compressed-domain perceptual embedding and a generalized correlator detector

    Get PDF
    A novel technique is proposed for watermarking of MPEG-1 and MPEG-2 compressed video streams. The proposed scheme is applied directly in the domain of MPEG-1 system streams and MPEG-2 program streams (multiplexed streams). Perceptual models are used during the embedding process in order to avoid degradation of the video quality. The watermark is detected without the use of the original video sequence. A modified correlation-based detector is introduced that applies nonlinear preprocessing before correlation. Experimental evaluation demonstrates that the proposed scheme is able to withstand several common attacks. The resulting watermarking system is very fast and therefore suitable for copyright protection of compressed video

    Audiovisual preservation strategies, data models and value-chains

    No full text
    This is a report on preservation strategies, models and value-chains for digital file-based audiovisual content. The report includes: (a)current and emerging value-chains and business-models for audiovisual preservation;(b) a comparison of preservation strategies for audiovisual content including their strengths and weaknesses, and(c) a review of current preservation metadata models, and requirements for extension to support audiovisual files

    Implementation of Transform Based Techniques in Digital Image Watermarking

    Get PDF
    Digital image watermarking is used to resolve the problems of data security and copyright protection. In many applications of digital watermarking, watermarked image of good quality are required. But here is a trade-off between number of embedded watermark images and quality of watermarked images. This aspect is quite important in case of multiple digital image watermarking. This project presents a robust digital image watermarking using discrete cosine transform (DCT) method. Compression on a watermarked image can significantly affect the detection of the embedded watermark. The detection of the presence or absence of a watermarked in an image is often affected if the watermarked image has undergone compression. Compression can also be considered as an attack on watermarked images. To show that a particular watermarking scheme is robust against compression, simulation is often relied DOI: 10.17762/ijritcc2321-8169.15084

    Digital Image Watermarking for Arbitrarily Shaped Objects Based On SA-DWT

    Full text link
    Many image watermarking schemes have been proposed in recent years, but they usually involve embedding a watermark to the entire image without considering only a particular object in the image, which the image owner may be interested in. This paper proposes a watermarking scheme that can embed a watermark to an arbitrarily shaped object in an image. Before embedding, the image owner specifies an object of arbitrary shape that is of a concern to him. Then the object is transformed into the wavelet domain using in place lifting shape adaptive DWT(SADWT) and a watermark is embedded by modifying the wavelet coefficients. In order to make the watermark robust and transparent, the watermark is embedded in the average of wavelet blocks using the visual model based on the human visual system. Wavelet coefficients n least significant bits (LSBs) are adjusted in concert with the average. Simulation results shows that the proposed watermarking scheme is perceptually invisible and robust against many attacks such as lossy compression (e.g.JPEG, JPEG2000), scaling, adding noise, filtering, etc.Comment: International Journal of Computer Science Issues, Volume 5, pp1-8, October 200

    Statistical Tools for Digital Image Forensics

    Get PDF
    A digitally altered image, often leaving no visual clues of having been tampered with, can be indistinguishable from an authentic image. The tampering, however, may disturb some underlying statistical properties of the image. Under this assumption, we propose five techniques that quantify and detect statistical perturbations found in different forms of tampered images: (1) re-sampled images (e.g., scaled or rotated); (2) manipulated color filter array interpolated images; (3) double JPEG compressed images; (4) images with duplicated regions; and (5) images with inconsistent noise patterns. These techniques work in the absence of any embedded watermarks or signatures. For each technique we develop the theoretical foundation, show its effectiveness on credible forgeries, and analyze its sensitivity and robustness to simple counter-attacks

    Embedding Authentication and DistortionConcealment in Images – A Noisy Channel Perspective

    Get PDF
    In multimedia communication, compression of data is essential to improve transmission rate, and minimize storage space. At the same time, authentication of transmitted data is equally important to justify all these activities. The drawback of compression is that the compressed data are vulnerable to channel noise. In this paper, error concealment methodologies with ability of error detection and concealment are investigated for integration with image authentication in JPEG2000.The image authentication includes digital signature extraction and its diffusion as a watermark. To tackle noise, the error concealment technologies are modified to include edge information of the original image.This edge_image is transmitted along with JPEG2000 compressed image to determine corrupted coefficients and regions. The simulation results are conducted on test images for different values of bit error rate to judge confidence in noise reduction within the received images

    A digital signature and watermarking based authentication system for JPEG2000 images

    Get PDF
    In this thesis, digital signature based authentication system was introduced, which is able to protect JPEG2000 images in different flavors, including fragile authentication and semi-fragile authentication. The fragile authentication is to protect the image at code-stream level, and the semi-fragile is to protect the image at the content level. The semi-fragile can be further classified into lossy and lossless authentication. With lossless authentication, the original image can be recovered after verification. The lossless authentication and the new image compression standard, JPEG2000 is mainly discussed in this thesis
    corecore