7 research outputs found

    Recovery from Linear Measurements with Complexity-Matching Universal Signal Estimation

    Full text link
    We study the compressed sensing (CS) signal estimation problem where an input signal is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the input signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of a stationary ergodic signal source are estimated simultaneously with the signal itself. Inspired by Kolmogorov complexity and minimum description length, we focus on a maximum a posteriori (MAP) estimation framework that leverages universal priors to match the complexity of the source. Our framework can also be applied to general linear inverse problems where more measurements than in CS might be needed. We provide theoretical results that support the algorithmic feasibility of universal MAP estimation using a Markov chain Monte Carlo implementation, which is computationally challenging. We incorporate some techniques to accelerate the algorithm while providing comparable and in many cases better reconstruction quality than existing algorithms. Experimental results show the promise of universality in CS, particularly for low-complexity sources that do not exhibit standard sparsity or compressibility.Comment: 29 pages, 8 figure

    Compressed Sensing via Universal Denoising and Approximate Message Passing

    No full text
    Abstract—We study compressed sensing (CS) signal reconstruction problems where an input signal is measured via matrix multiplication under additive white Gaussian noise. Our signals are assumed to be stationary and ergodic, but the input statistics are unknown; the goal is to provide reconstruction algorithms that are universal to the input statistics. We present a novel algorithm that combines: (i) the approximate message passing (AMP) CS reconstruction framework, which converts the matrix channel recovery problem into scalar channel denoising; (ii) a universal denoising scheme based on context quantization, which partitions the stationary ergodic signal denoising into independent and identically distributed (i.i.d.) subsequence denoising; and (iii) a density estimation approach that approximates the probability distribution of an i.i.d. sequence by fitting a Gaussian mixture (GM) model. In addition to the algorithmic framework, we provide three contributions: (i) numerical results showing that state evolution holds for nonseparable Bayesian sliding-window denoisers; (ii) a universal denoiser that does not require the input signal to be bounded; and (iii) we modify the GM learning algorithm, and extend it to an i.i.d. denoiser. Our universal CS recovery algorithm compares favorably with existing reconstruction algorithms in terms of both reconstruction quality and runtime, despite not knowing the input statistics of the stationary ergodic signal. Index Terms—approximate message passing, compressed sensing, Gaussian mixture model, universal denoising
    corecore