4,812 research outputs found

    Issues in the design of switched linear systems : a benchmark study

    Get PDF
    In this paper we present a tutorial overview of some of the issues that arise in the design of switched linear control systems. Particular emphasis is given to issues relating to stability and control system realisation. A benchmark regulation problem is then presented. This problem is most naturally solved by means of a switched control design. The challenge to the community is to design a control system that meets the required performance specifications and permits the application of rigorous analysis techniques. A simple design solution is presented and the limitations of currently available analysis techniques are illustrated with reference to this example

    Symbolic Models for Stochastic Switched Systems: A Discretization and a Discretization-Free Approach

    Full text link
    Stochastic switched systems are a relevant class of stochastic hybrid systems with probabilistic evolution over a continuous domain and control-dependent discrete dynamics over a finite set of modes. In the past few years several different techniques have been developed to assist in the stability analysis of stochastic switched systems. However, more complex and challenging objectives related to the verification of and the controller synthesis for logic specifications have not been formally investigated for this class of systems as of yet. With logic specifications we mean properties expressed as formulae in linear temporal logic or as automata on infinite strings. This paper addresses these complex objectives by constructively deriving approximately equivalent (bisimilar) symbolic models of stochastic switched systems. More precisely, this paper provides two different symbolic abstraction techniques: one requires state space discretization, but the other one does not require any space discretization which can be potentially more efficient than the first one when dealing with higher dimensional stochastic switched systems. Both techniques provide finite symbolic models that are approximately bisimilar to stochastic switched systems under some stability assumptions on the concrete model. This allows formally synthesizing controllers (switching signals) that are valid for the concrete system over the finite symbolic model, by means of mature automata-theoretic techniques in the literature. The effectiveness of the results are illustrated by synthesizing switching signals enforcing logic specifications for two case studies including temperature control of a six-room building.Comment: 25 pages, 4 figures. arXiv admin note: text overlap with arXiv:1302.386

    Further Results on Active Magnetic Bearing Control with Input Saturation

    Full text link
    We study the low-bias stabilization of active magnetic bearings (AMBs) subject to voltage saturation based on a recently proposed model for the AMB switching mode of operation. Using a forwarding-like approach, we construct a stabilizing controller of arbitrarily small amplitude and a control-Lyapunov function for the AMB dynamics. We illustrate our construction using a numerical example.Comment: 9 pages, 2 figures. IEEE Transactions on Control Systems Technology, accepted for publication in January 200

    Consensus problems in networks of agents with switching topology and time-delays

    Get PDF
    In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results
    • …
    corecore