11,498 research outputs found

    Convolutional Neural Networks with Recurrent Neural Filters

    Full text link
    We introduce a class of convolutional neural networks (CNNs) that utilize recurrent neural networks (RNNs) as convolution filters. A convolution filter is typically implemented as a linear affine transformation followed by a non-linear function, which fails to account for language compositionality. As a result, it limits the use of high-order filters that are often warranted for natural language processing tasks. In this work, we model convolution filters with RNNs that naturally capture compositionality and long-term dependencies in language. We show that simple CNN architectures equipped with recurrent neural filters (RNFs) achieve results that are on par with the best published ones on the Stanford Sentiment Treebank and two answer sentence selection datasets.Comment: Accepted by EMNLP 2018 as a short pape

    Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review

    Get PDF
    The paper characterizes classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage

    Dynamic Compositional Neural Networks over Tree Structure

    Full text link
    Tree-structured neural networks have proven to be effective in learning semantic representations by exploiting syntactic information. In spite of their success, most existing models suffer from the underfitting problem: they recursively use the same shared compositional function throughout the whole compositional process and lack expressive power due to inability to capture the richness of compositionality. In this paper, we address this issue by introducing the dynamic compositional neural networks over tree structure (DC-TreeNN), in which the compositional function is dynamically generated by a meta network. The role of meta-network is to capture the metaknowledge across the different compositional rules and formulate them. Experimental results on two typical tasks show the effectiveness of the proposed models.Comment: Accepted by IJCAI 201

    Self-organization of action hierarchy and compositionality by reinforcement learning with recurrent neural networks

    Get PDF
    Recurrent neural networks (RNNs) for reinforcement learning (RL) have shown distinct advantages, e.g., solving memory-dependent tasks and meta-learning. However, little effort has been spent on improving RNN architectures and on understanding the underlying neural mechanisms for performance gain. In this paper, we propose a novel, multiple-timescale, stochastic RNN for RL. Empirical results show that the network can autonomously learn to abstract sub-goals and can self-develop an action hierarchy using internal dynamics in a challenging continuous control task. Furthermore, we show that the self-developed compositionality of the network enhances faster re-learning when adapting to a new task that is a re-composition of previously learned sub-goals, than when starting from scratch. We also found that improved performance can be achieved when neural activities are subject to stochastic rather than deterministic dynamics
    corecore