5,895 research outputs found

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Study on Resource Configuration on Cloud Manufacturing

    Get PDF
    The purpose of manufacturing is to realize the requirement of customer. In manufacturing process of cloud system, there exist a lot of resource services which have similar functional characteristics to realize the requirement. It makes the manufacturing process more diverse. To develop the quality and reduce cost, a resource configuration model on cloud-manufacturing platform is put forward in this paper. According to the generalized six-point location principle, a growth design from the requirement of customers to entities with geometric constraints is proposed. By the requirement growing up to product, a configuration process is used to match the entities with the instances which the resources in the database could supply. Different from most existing studies, this paper studies the tolerance design with multiple candidate resource suppliers on cloud manufacturing to make the market play a two-level game considering the benefit of customers and the profit of resources to give an optimal result. A numerical case study is used to illustrate the proposed model and configuration process. The performance and advantage of the proposed method are discussed at the end

    A Novel Method for Adaptive Control of Manufacturing Equipment in Cloud Environments

    Get PDF
    The ability to adaptively control manufacturing equipment, both in local and distributed environments, is becoming increasingly more important for many manufacturing companies. One important reason for this is that manufacturing companies are facing increasing levels of changes, variations and uncertainty, caused by both internal and external factors, which can negatively impact their performance. Frequently changing consumer requirements and market demands usually lead to variations in manufacturing quantities, product design and shorter product life-cycles. Variations in manufacturing capability and functionality, such as equipment breakdowns, missing/worn/broken tools and delays, also contribute to a high level of uncertainty. The result is unpredictable manufacturing system performance, with an increased number of unforeseen events occurring in these systems. Events which are difficult for traditional planning and control systems to satisfactorily manage. For manufacturing scenarios such as these, the use of real-time manufacturing information and intelligence is necessary to enable manufacturing activities to be performed according to actual manufacturing conditions and requirements, and not according to a pre-determined process plan. Therefore, there is a need for an event-driven control approach to facilitate adaptive decision-making and dynamic control capabilities. Another reason driving the move for adaptive control of manufacturing equipment is the trend of increasing globalization, which forces manufacturing industry to focus on more cost-effective manufacturing systems and collaboration within global supply chains and manufacturing networks. Cloud Manufacturing is evolving as a new manufacturing paradigm to match this trend, enabling the mutually advantageous sharing of resources, knowledge and information between distributed companies and manufacturing units. One of the crucial objectives for Cloud Manufacturing is the coordinated planning, control and execution of discrete manufacturing operations in collaborative and networked environments. Therefore, there is also a need that such an event-driven control approach supports the control of distributed manufacturing equipment. The aim of this research study is to define and verify a novel and comprehensive method for adaptive control of manufacturing equipment in cloud environments. The presented research follows the Design Science Research methodology. From a review of research literature, problems regarding adaptive manufacturing equipment control have been identified. A control approach, building on a structure of event-driven Manufacturing Feature Function Blocks, supported by an Information Framework, has been formulated. The Function Block structure is constructed to generate real-time control instructions, triggered by events from the manufacturing environment. The Information Framework uses the concept of Ontologies and The Semantic Web to enable description and matching of manufacturing resource capabilities and manufacturing task requests in distributed environments, e.g. within Cloud Manufacturing. The suggested control approach has been designed and instantiated, implemented as prototype systems for both local and distributed manufacturing scenarios, in both real and virtual applications. In these systems, event-driven Assembly Feature Function Blocks for adaptive control of robotic assembly tasks have been used to demonstrate the applicability of the control approach. The utility and performance of these prototype systems have been tested, verified and evaluated for different assembly scenarios. The proposed control approach has many promising characteristics for use within both local and distributed environments, such as cloud environments. The biggest advantage compared to traditional control is that the required control is created at run-time according to actual manufacturing conditions. The biggest obstacle for being applicable to its full extent is manufacturing equipment controlled by proprietary control systems, with native control languages. To take the full advantage of the IEC Function Block control approach, controllers which can interface, interpret and execute these Function Blocks directly, are necessary

    Scheduling in cloud manufacturing systems: Recent systematic literature review

    Get PDF
    Cloud Manufacturing (CMFg) is a novel production paradigm that benefits from Cloud Computing in order to develop manufacturing systems linked by the cloud. These systems, based on virtual platforms, allow direct linkage between customers and suppliers of manufacturing services, regardless of geographical distance. In this way, CMfg can expand both markets for producers, and suppliers for customers. However, these linkages imply a new challenge for production planning and decision-making process, especially in Scheduling. In this paper, a systematic literature review of articles addressing scheduling in Cloud Manufacturing environments is carried out. The review takes as its starting point a seminal study published in 2019, in which all problem features are described in detail. We pay special attention to the optimization methods and problem-solving strategies that have been suggested in CMfg scheduling. From the review carried out, we can assert that CMfg is a topic of growing interest within the scientific community. We also conclude that the methods based on bio-inspired metaheuristics are by far the most widely used (they represent more than 50% of the articles found). On the other hand, we suggest some lines for future research to further consolidate this field. In particular, we want to highlight the multi-objective approach, since due to the nature of the problem and the production paradigm, the optimization objectives involved are generally in conflict. In addition, decentralized approaches such as those based on game theory are promising lines for future research.Fil: Halty, Agustín. Universidad de la República; UruguayFil: Sánchez, Rodrigo. Universidad de la República; UruguayFil: Vázquez, Valentín. Universidad de la República; UruguayFil: Viana, Víctor. Universidad de la República; UruguayFil: Piñeyro, Pedro. Universidad de la República; UruguayFil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentin

    Sustainability Benefits Analysis of CyberManufacturing Systems

    Get PDF
    Confronted with growing sustainability awareness, mounting environmental pressure, meeting modern customers’ demand and the need to develop stronger market competitiveness, the manufacturing industry is striving to address sustainability-related issues in manufacturing. A new manufacturing system called CyberManufacturing System (CMS) has a great potential in addressing sustainability issues by handling manufacturing tasks differently and better than traditional manufacturing systems. CMS is an advanced manufacturing system where physical components are fully integrated and seamlessly networked with computational processes. The recent developments in Internet of Things, Cloud Computing, Fog Computing, Service-Oriented Technologies, etc., all contribute to the development of CMS. Under the context of this new manufacturing paradigm, every manufacturing resource or capability is digitized, registered and shared with all the networked users and stakeholders directly or through the Internet. CMS infrastructure enables intelligent behaviors of manufacturing components and systems such as self-monitoring, self-awareness, self-prediction, self-optimization, self-configuration, self-scalability, self-remediating and self-reusing. Sustainability benefits of CMS are generally mentioned in the existing researches. However, the existing sustainability studies of CMS focus a narrow scope of CMS (e.g., standalone machines and specific industrial domains) or partial aspects of sustainability analysis (e.g., solely from energy consumption or material consumption perspectives), and thus no research has comprehensively addressed the sustainability analysis of CMS. The proposed research intends to address these gaps by developing a comprehensive definition, architecture, functionality study of CMS for sustainability benefits analysis. A sustainability assessment framework based on Distance-to-Target methodology is developed to comprehensively and objectively evaluate manufacturing systems’ sustainability performance. Three practical cases are captured as examples for instantiating all CMS functions and analyzing the advancements of CMS in addressing concrete sustainability issues. As a result, CMS has proven to deliver substantial sustainability benefits in terms of (i) the increment of productivity, production quality, profitability & facility utilization and (ii) the reduction in Working-In-Process (WIP) inventory level & material consumption compared with the alternative traditional manufacturing system paradigms

    Analysis of distributed ledger technologies for industrial manufacturing

    Get PDF
    In recent years, industrial manufacturing has undergone massive technological changes that embrace digitalization and automation towards the vision of intelligent manufacturing plants. With the aim of maximizing efficiency and profitability in production, an important goal is to enable flexible manufacturing, both, for the customer (desiring more individualized products) and for the manufacturer (to adjust to market demands). Manufacturing-as-a-service can support this through manufacturing plants that are used by different tenants who utilize the machines in the plant, which are offered by different providers. To enable such pay-per-use business models, Distributed Ledger Technology (DLT) is a viable option to establish decentralized trust and traceability. Thus, in this paper, we study potential DLT technologies for efficient and intelligent integration of DLT-based solutions in manufacturing environments. We propose a general framework to adapt DLT in manufacturing, and then we introduce the use case of shared manufacturing, which we utilize to study the communication and computation efficiency of selected DLTs in resource-constrained wireless IoT networks

    Smart Manufacturing

    Get PDF
    This book is a collection of 11 articles that are published in the corresponding Machines Special Issue “Smart Manufacturing”. It represents the quality, breadth and depth of the most updated study in smart manufacturing (SM); in particular, digital technologies are deployed to enhance system smartness by (1) empowering physical resources in production, (2) utilizing virtual and dynamic assets over the Internet to expand system capabilities, (3) supporting data-driven decision-making activities at various domains and levels of businesses, or (4) reconfiguring systems to adapt to changes and uncertainties. System smartness can be evaluated by one or a combination of performance metrics such as degree of automation, cost-effectiveness, leanness, robustness, flexibility, adaptability, sustainability, and resilience. This book features, firstly, the concepts digital triad (DT-II) and Internet of digital triad things (IoDTT), proposed to deal with the complexity, dynamics, and scalability of complex systems simultaneously. This book also features a comprehensive survey of the applications of digital technologies in space instruments; a systematic literature search method is used to investigate the impact of product design and innovation on the development of space instruments. In addition, the survey provides important information and critical considerations for using cutting edge digital technologies in designing and manufacturing space instruments
    • …
    corecore