3 research outputs found

    Composite Cyclotomic Fourier Transforms with Reduced Complexities

    Full text link
    Discrete Fourier transforms~(DFTs) over finite fields have widespread applications in digital communication and storage systems. Hence, reducing the computational complexities of DFTs is of great significance. Recently proposed cyclotomic fast Fourier transforms (CFFTs) are promising due to their low multiplicative complexities. Unfortunately, there are two issues with CFFTs: (1) they rely on efficient short cyclic convolution algorithms, which has not been investigated thoroughly yet, and (2) they have very high additive complexities when directly implemented. In this paper, we address both issues. One of the main contributions of this paper is efficient bilinear 11-point cyclic convolution algorithms, which allow us to construct CFFTs over GF(211)(2^{11}). The other main contribution of this paper is that we propose composite cyclotomic Fourier transforms (CCFTs). In comparison to previously proposed fast Fourier transforms, our CCFTs achieve lower overall complexities for moderate to long lengths, and the improvement significantly increases as the length grows. Our 2047-point and 4095-point CCFTs are also first efficient DFTs of such lengths to the best of our knowledge. Finally, our CCFTs are also advantageous for hardware implementations due to their regular and modular structure.Comment: submitted to IEEE trans on Signal Processin

    Reduced-Complexity Decoder of Long Reed-Solomon Codes Based on Composite Cyclotomic Fourier Transforms

    Full text link
    Long Reed-Solomon (RS) codes are desirable for digital communication and storage systems due to their improved error performance, but the high computational complexity of their decoders is a key obstacle to their adoption in practice. As discrete Fourier transforms (DFTs) can evaluate a polynomial at multiple points, efficient DFT algorithms are promising in reducing the computational complexities of syndrome based decoders for long RS codes. In this paper, we first propose partial composite cyclotomic Fourier transforms (CCFTs) and then devise syndrome based decoders for long RS codes over large finite fields based on partial CCFTs. The new decoders based on partial CCFTs achieve a significant saving of computational complexities for long RS codes. Since partial CCFTs have modular and regular structures, the new decoders are suitable for hardware implementations. To further verify and demonstrate the advantages of partial CCFTs, we implement in hardware the syndrome computation block for a (2720,2550)(2720, 2550) shortened RS code over GF(212)(2^{12}). In comparison to previous results based on Horner's rule, our hardware implementation not only has a smaller gate count, but also achieves much higher throughputs.Comment: 7 pages, 1 figur

    A novel method for computation of the discrete Fourier transform over characteristic two finite field of even extension degree

    Full text link
    A novel method for computation of the discrete Fourier transform over a finite field with reduced multiplicative complexity is described. If the number of multiplications is to be minimized, then the novel method for the finite field of even extension degree is the best known method of the discrete Fourier transform computation. A constructive method of constructing for a cyclic convolution over a finite field is introduced.Comment: 35 pages. Submitted to IEEE Transactions on Information Theor
    corecore