34 research outputs found

    Composing Feature Models

    Get PDF
    International audienceFeature modeling is a widely used technique in Software Product Line development. Feature models allow stakeholders to describe domain concepts in terms of commonalities and differences within a family of software systems. Developing a complex monolithic feature model can require significant effort and restrict the reusability of a set of features already modeled. We advocate using modeling techniques that support separating and composing concerns to better manage the complexity of developing large feature models. In this paper, we propose a set of composition operators dedicated to feature models. These composition operators enable the development of large feature models by composing smaller feature models which address well-defined concerns. The operators are notably distinguished by their documented capabilities to preserve some significant properties

    Domain Specific Languages for Managing Feature Models: Advances and Challenges

    Get PDF
    International audienceManaging multiple and complex feature models is a tedious and error-prone activity in software product line engineering. Despite many advances in formal methods and analysis techniques, the supporting tools and APIs are not easily usable together, nor unified. In this paper, we report on the development and evolution of the Familiar Domain-Specific Language (DSL). Its toolset is dedicated to the large scale management of feature models through a good support for separating concerns, composing feature models and scripting manipulations. We overview various applications of Familiar and discuss both advantages and identified drawbacks. We then devise salient challenges to improve such DSL support in the near future

    Evaluating the usability of a visual feature modeling notation

    Get PDF
    International audienceFeature modeling is a popular Software Product Line Engineering (SPLE) technique used to describe variability in a product family. A usable feature modeling tool environment should enable SPLE practitioners to produce good quality models, in particular, models that effectively communicate modeled information. FAMILIAR is a text-based environment for manipulating and composing Feature Models (FMs). In this paper we present extensions we made to FAMILIAR to enhance its usability. The extensions include a visualization of FMs, or more precisely , a feature diagram rendering mechanism that supports the use of a combination of text and graphics to describe FMs, their configurations, and the results of FM analyses. We also present the results of a preliminary evaluation of the environment's usability. The evaluation involves comparing the use of the extended environment with the previous text-based console-driven version. The preliminary experiment provides some evidence that use of the new environment results in increased cognitive effectiveness of novice users and improved quality of new FMs

    Composing your Compositions of Variability Models

    Get PDF
    International audienceModeling and managing variability is a key activity in a growing number of software engineering contexts. Support for composing variability models is arising in many engineering scenarios, for instance, when several subsystems or modeling artifacts, each coming with their own variability and possibly developed by different stakeholders, should be combined together. In this paper, we consider the problem of composing feature models (FMs), a widely used formalism for representing and reasoning about a set of variability choices. We show that several composition operators can actually be defined, depending on both matching/merging strategies and semantic properties expected in the composed FM. We present four alternative forms and their implementations. We discuss their relative trade-offs w.r.t. reasoning, customizability, traceability, composability and quality of the resulting feature diagram. We summarize these findings in a reading grid which is validated by revisiting some relevant existing works. Our contribution should assist developers in choosing and implementing the right composition operators

    Intersection of Feature Models

    Get PDF
    In this paper, we present an algorithm for the construction of the intersection of two feature models. The feature models are allowed to have "requires" and "excludes" constraints, and should be parent-compatible. The algorithm is applied to the problem of combining feature models from stakeholders with different viewpoints

    Sensor Data Visualisation: A Composition-Based Approach to Support Domain Variability

    Get PDF
    International audienceIn the context of the Internet of Things, sensors are surrounding our environment. These small pieces of electronics are inserted in everyday life's elements (e.g., cars, doors, radiators, smartphones) and continuously collect information about their environment. One of the biggest challenges is to support the development of accurate monitoring dashboard to visualise such data. The one-size-fits-all paradigm does not apply in this context, as user's roles are variable and impact the way data should be visualised: a building manager does not need to work on the same data as classical users. This paper presents an approach based on model composition techniques to support the development of such monitoring dashboards, taking into account the domain variability. This variability is supported at both implementation and modelling levels. The results are validated on a case study named SmartCampus, involving sensors deployed in a real academic campus
    corecore