4,705,731 research outputs found
Icosahedral multi-component model sets
A quasiperiodic packing Q of interpenetrating copies of C, most of them only
partially occupied, can be defined in terms of the strip projection method for
any icosahedral cluster C. We show that in the case when the coordinates of the
vectors of C belong to the quadratic field Q[\sqrt{5}] the dimension of the
superspace can be reduced, namely, Q can be re-defined as a multi-component
model set by using a 6-dimensional superspace.Comment: 7 pages, LaTeX2e in IOP styl
Two Component Model of Dark Energy
We consider the possibility that the dark energy is made up of two or more
independent components, each having a different equation of state. We fit the
model with supernova and gamma-ray burst (GRB) data from resent observations,
and use the Markov Chain Monte Carlo (MCMC) technique to estimate the allowed
parameter regions. We also use various model selection criteria to compare the
two component model with the LCDM, one component dark energy model with static
or variable w(XCDM), and with other multi-component models. We find that the
two component models can give reasonably good fit to the current data. For some
data sets, and depending somewhat on the model selection criteria, the two
component model can give better fit to the data than XCDM with static w and
XCDM with variable w parameterized by w = w_0 + w_az/(1+z).Comment: 10 pages, 8 figures, 3 tables; Version accepted by PR
Component technologies: Java Beans, COM, CORBA, RMI, EJB and the CORBA component model
This one-day tutorial is aimed at software engineering practitioners and researchers, who are familiar with objectoriented analysis, design and programming and want to obtain an overview of the technologies that are enabling component-based development. We introduce the idea of component-based development by defining the concept and providing its economic rationale. We describe how object-oriented programming evolved into local component models, such as Java Beans and distributed object technologies, such as the Common Object Request Broker Architecture (CORBA), Java Remote Method Invocation (RMI) and the Component Object Model (COM). We then address how these technologies matured into distributed component models, in partiuclar Enterprise Java Beans (EJB) and the CORBA Component Model (CCM). We give an assessment of the maturity of each of these technologies and sketch how they are used to build distributed architectures
Component Selection in the Additive Regression Model
Similar to variable selection in the linear regression model, selecting
significant components in the popular additive regression model is of great
interest. However, such components are unknown smooth functions of independent
variables, which are unobservable. As such, some approximation is needed. In
this paper, we suggest a combination of penalized regression spline
approximation and group variable selection, called the lasso-type spline method
(LSM), to handle this component selection problem with a diverging number of
strongly correlated variables in each group. It is shown that the proposed
method can select significant components and estimate nonparametric additive
function components simultaneously with an optimal convergence rate
simultaneously. To make the LSM stable in computation and able to adapt its
estimators to the level of smoothness of the component functions, weighted
power spline bases and projected weighted power spline bases are proposed.
Their performance is examined by simulation studies across two set-ups with
independent predictors and correlated predictors, respectively, and appears
superior to the performance of competing methods. The proposed method is
extended to a partial linear regression model analysis with real data, and
gives reliable results
Two-component model of a spin-polarized transport
Effect of the spin-involved interaction of electrons with impurity atoms or
defects to the transport properties of a two-dimensional electron gas is
described by using a simplifying two-component model. Components representing
spin-up and spin-down states are supposed to be coupled at a discrete set of
points within a conduction channel. The used limit of the short-range
interaction allows to solve the relevant scattering problem exactly. By varying
the model parameters different transport regimes of two-terminal devices with
ferromagnetic contacts can be described. In a quasi-ballistic regime the
resulting difference between conductances for the parallel and antiparallel
orientation of the contact magnetization changes its sign as a function of the
length of the conduction channel if appropriate model parameters are chosen.
The effect is in agreement with recent experimental observations.Comment: 4 RevTeX pages with 4 figure
Two-component model for the deuteron electromagnetic structure
We suggest a simple phenomenological parametrization for all three deuteron
electromagnetic form factors, and show that a good fit on the available data,
with a minimal number of parameters, can be obtained. The present description
of the deuteron electromagnetic structure is based on two components with
different radii, one corresponding to two nucleons separated by 2 fm,
and a standard isoscalar contribution, saturated by and mesons,
only.Comment: 5 pages, 6 fig. 2 table
Resonance structures in coupled two-component model
We present a numerical study of the process of the kink-antikink collisions
in the coupled one-dimensional two-component model. Our results reveal
two different soliton solutions which represent double kink configuration and
kink-non-topological soliton (lump) bound state. Collision of these solitons
leads to very reach resonance structure which is related to reversible energy
exchange between the kinks, non-topological solitons and the internal
vibrational modes. Various channels of the collisions are discussed, it is
shown there is a new type of self-similar fractal structure which appears in
the collisions of the relativistic kinks, there the width of the resonance
windows increases with the increase of the impact velocity. An analytical
approximation scheme is discussed in the limit of the perturbative coupling
between the sectors. Considering the spectrum of linear fluctuations around the
solitons we found that the double kink configuration is unstable if the
coupling constant between the sectors is negative.Comment: 21 pages, 19 figure
Structure Space of Model Proteins --A Principle Component Analysis
We study the space of all compact structures on a two-dimensional square
lattice of size . Each structure is mapped onto a vector in
-dimensions according to a hydrophobic model. Previous work has shown that
the designabilities of structures are closely related to the distribution of
the structure vectors in the -dimensional space, with highly designable
structures predominantly found in low density regions. We use principal
component analysis to probe and characterize the distribution of structure
vectors, and find a non-uniform density with a single peak. Interestingly, the
principal axes of this peak are almost aligned with Fourier eigenvectors, and
the corresponding Fourier eigenvalues go to zero continuously at the
wave-number for alternating patterns (). These observations provide a
stepping stone for an analytic description of the distribution of structural
points, and open the possibility of estimating designabilities of realistic
structures by simply Fourier transforming the hydrophobicities of the
corresponding sequences.Comment: 14 pages, 12 figures, Conclusion has been modifie
Collective and static properties of model two-component plasmas
Classical MD data on the charge-charge dynamic structure factor of
two-component plasmas (TCP) modeled in Phys. Rev. A 23, 2041 (1981) are
analyzed using the sum rules and other exact relations. The convergent power
moments of the imaginary part of the model system dielectric function are
expressed in terms of its partial static structure factors, which are computed
by the method of hypernetted chains using the Deutsch effective potential.
High-frequency asymptotic behavior of the dielectric function is specified to
include the effects of inverse bremsstrahlung. The agreement with the MD data
is improved, and important statistical characteristics of the model TCP, such
as the probability to find both electron and ion at one point, are determined.Comment: 25 pages, 6 figures, 5 tables. Published in Physical Review E
http://link.aps.org/abstract/PRE/v76/e02640
- …
