6,012 research outputs found

    Hierarchies of Relaxations for Online Prediction Problems with Evolving Constraints

    Get PDF
    We study online prediction where regret of the algorithm is measured against a benchmark defined via evolving constraints. This framework captures online prediction on graphs, as well as other prediction problems with combinatorial structure. A key aspect here is that finding the optimal benchmark predictor (even in hindsight, given all the data) might be computationally hard due to the combinatorial nature of the constraints. Despite this, we provide polynomial-time \emph{prediction} algorithms that achieve low regret against combinatorial benchmark sets. We do so by building improper learning algorithms based on two ideas that work together. The first is to alleviate part of the computational burden through random playout, and the second is to employ Lasserre semidefinite hierarchies to approximate the resulting integer program. Interestingly, for our prediction algorithms, we only need to compute the values of the semidefinite programs and not the rounded solutions. However, the integrality gap for Lasserre hierarchy \emph{does} enter the generic regret bound in terms of Rademacher complexity of the benchmark set. This establishes a trade-off between the computation time and the regret bound of the algorithm

    A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs

    Full text link
    This work deals with a class of problems under interval data uncertainty, namely interval robust-hard problems, composed of interval data min-max regret generalizations of classical NP-hard combinatorial problems modeled as 0-1 integer linear programming problems. These problems are more challenging than other interval data min-max regret problems, as solely computing the cost of any feasible solution requires solving an instance of an NP-hard problem. The state-of-the-art exact algorithms in the literature are based on the generation of a possibly exponential number of cuts. As each cut separation involves the resolution of an NP-hard classical optimization problem, the size of the instances that can be solved efficiently is relatively small. To smooth this issue, we present a modeling technique for interval robust-hard problems in the context of a heuristic framework. The heuristic obtains feasible solutions by exploring dual information of a linearly relaxed model associated with the classical optimization problem counterpart. Computational experiments for interval data min-max regret versions of the restricted shortest path problem and the set covering problem show that our heuristic is able to find optimal or near-optimal solutions and also improves the primal bounds obtained by a state-of-the-art exact algorithm and a 2-approximation procedure for interval data min-max regret problems
    • …
    corecore