58,824 research outputs found

    Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in intermediate filament protein networks

    Get PDF
    Proteins constitute the elementary building blocks of a vast variety of biological materials such as cellular protein networks, spider silk or bone, where they create extremely robust, multi-functional materials by self-organization of structures over many length- and time scales, from nano to macro. Some of the structural features are commonly found in a many different tissues, that is, they are highly conserved. Examples of such universal building blocks include alpha-helices, beta-sheets or tropocollagen molecules. In contrast, other features are highly specific to tissue types, such as particular filament assemblies, beta-sheet nanocrystals in spider silk or tendon fascicles. These examples illustrate that the coexistence of universality and diversity – in the following referred to as the universality-diversity paradigm (UDP) – is an overarching feature in protein materials. This paradigm is a paradox: How can a structure be universal and diverse at the same time? In protein materials, the coexistence of universality and diversity is enabled by utilizing hierarchies, which serve as an additional dimension beyond the 3D or 4D physical space. This may be crucial to understand how their structure and properties are linked, and how these materials are capable of combining seemingly disparate properties such as strength and robustness. Here we illustrate how the UDP enables to unify universal building blocks and highly diversified patterns through formation of hierarchical structures that lead to multi-functional, robust yet highly adapted structures. We illustrate these concepts in an analysis of three types of intermediate filament proteins, including vimentin, lamin and keratin

    MIRAI Architecture for Heterogeneous Network

    Get PDF
    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available

    Language: The missing selection pressure

    Full text link
    Human beings are talkative. What advantage did their ancestors find in communicating so much? Numerous authors consider this advantage to be "obvious" and "enormous". If so, the problem of the evolutionary emergence of language amounts to explaining why none of the other primate species evolved anything even remotely similar to language. What I propose here is to reverse the picture. On closer examination, language resembles a losing strategy. Competing for providing other individuals with information, sometimes striving to be heard, makes apparently no sense within a Darwinian framework. At face value, language as we can observe it should never have existed or should have been counter-selected. In other words, the selection pressure that led to language is still missing. The solution I propose consists in regarding language as a social signaling device that developed in a context of generalized insecurity that is unique to our species. By talking, individuals advertise their alertness and their ability to get informed. This hypothesis is shown to be compatible with many characteristics of language that otherwise are left unexplained.Comment: 34 pages, 3 figure

    Measurement Based Reconfigurations in Optical Ring Metro Networks

    Get PDF
    Single-hop wavelength division multiplexing (WDM) optical ring networks operating in packet mode are one of themost promising architectures for the design of innovative metropolitan network (metro) architectures. They permit a cost-effective design, with a good combination of optical and electronic technologies, while supporting features like restoration and reconfiguration that are essential in any metro scenario. In this article, we address the tunability requirements that lead to an effective resource usage and permit reconfiguration in optical WDM metros.We introduce reconfiguration algorithms that, on the basis of traffic measurements, adapt the network configuration to traffic demands to optimize performance. Using a specific network architecture as a reference case, the paper aims at the broader goal of showing which are the advantages fostered by innovative network designs exploiting the features of optical technologies
    • 

    corecore