105,552 research outputs found

    Nearly Optimal Sparse Group Testing

    Full text link
    Group testing is the process of pooling arbitrary subsets from a set of nn items so as to identify, with a minimal number of tests, a "small" subset of dd defective items. In "classical" non-adaptive group testing, it is known that when dd is substantially smaller than nn, Θ(dlog(n))\Theta(d\log(n)) tests are both information-theoretically necessary and sufficient to guarantee recovery with high probability. Group testing schemes in the literature meeting this bound require most items to be tested Ω(log(n))\Omega(\log(n)) times, and most tests to incorporate Ω(n/d)\Omega(n/d) items. Motivated by physical considerations, we study group testing models in which the testing procedure is constrained to be "sparse". Specifically, we consider (separately) scenarios in which (a) items are finitely divisible and hence may participate in at most γo(log(n))\gamma \in o(\log(n)) tests; or (b) tests are size-constrained to pool no more than ρo(n/d)\rho \in o(n/d)items per test. For both scenarios we provide information-theoretic lower bounds on the number of tests required to guarantee high probability recovery. In both scenarios we provide both randomized constructions (under both ϵ\epsilon-error and zero-error reconstruction guarantees) and explicit constructions of designs with computationally efficient reconstruction algorithms that require a number of tests that are optimal up to constant or small polynomial factors in some regimes of n,d,γ,n, d, \gamma, and ρ\rho. The randomized design/reconstruction algorithm in the ρ\rho-sized test scenario is universal -- independent of the value of dd, as long as ρo(n/d)\rho \in o(n/d). We also investigate the effect of unreliability/noise in test outcomes. For the full abstract, please see the full text PDF

    Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn't matter

    Full text link
    Let C be a depth-3 circuit with n variables, degree d and top fanin k (called sps(k,d,n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runs in time poly(nd^k), regardless of the base field. The only field for which polynomial time algorithms were previously known is F=Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a sps(k,d,n) circuit to k variables, but preserves the identity structure.Comment: 14 pages, 1 figure, preliminary versio

    OneMax in Black-Box Models with Several Restrictions

    Full text link
    Black-box complexity studies lower bounds for the efficiency of general-purpose black-box optimization algorithms such as evolutionary algorithms and other search heuristics. Different models exist, each one being designed to analyze a different aspect of typical heuristics such as the memory size or the variation operators in use. While most of the previous works focus on one particular such aspect, we consider in this work how the combination of several algorithmic restrictions influence the black-box complexity. Our testbed are so-called OneMax functions, a classical set of test functions that is intimately related to classic coin-weighing problems and to the board game Mastermind. We analyze in particular the combined memory-restricted ranking-based black-box complexity of OneMax for different memory sizes. While its isolated memory-restricted as well as its ranking-based black-box complexity for bit strings of length nn is only of order n/lognn/\log n, the combined model does not allow for algorithms being faster than linear in nn, as can be seen by standard information-theoretic considerations. We show that this linear bound is indeed asymptotically tight. Similar results are obtained for other memory- and offspring-sizes. Our results also apply to the (Monte Carlo) complexity of OneMax in the recently introduced elitist model, in which only the best-so-far solution can be kept in the memory. Finally, we also provide improved lower bounds for the complexity of OneMax in the regarded models. Our result enlivens the quest for natural evolutionary algorithms optimizing OneMax in o(nlogn)o(n \log n) iterations.Comment: This is the full version of a paper accepted to GECCO 201

    Generalization Error in Deep Learning

    Get PDF
    Deep learning models have lately shown great performance in various fields such as computer vision, speech recognition, speech translation, and natural language processing. However, alongside their state-of-the-art performance, it is still generally unclear what is the source of their generalization ability. Thus, an important question is what makes deep neural networks able to generalize well from the training set to new data. In this article, we provide an overview of the existing theory and bounds for the characterization of the generalization error of deep neural networks, combining both classical and more recent theoretical and empirical results
    corecore