2 research outputs found

    Center Smoothing: Provable Robustness for Functions with Metric-Space Outputs

    Full text link
    Randomized smoothing has been successfully applied to classification tasks on high-dimensional inputs, such as images, to obtain models that are provably robust against adversarial perturbations of the input. We extend this technique to produce provable robustness for functions that map inputs into an arbitrary metric space rather than discrete classes. Such functions are used in many machine learning problems like image reconstruction, dimensionality reduction, facial recognition, etc. Our robustness certificates guarantee that the change in the output of the smoothed model as measured by the distance metric remains small for any norm-bounded perturbation of the input. We can certify robustness under a variety of different output metrics, such as total variation distance, Jaccard distance, perceptual metrics, etc. In our experiments, we apply our procedure to create certifiably robust models with disparate output spaces -- from sets to images -- and show that it yields meaningful certificates without significantly degrading the performance of the base model. The code for our experiments is available at: https://github.com/aounon/center-smoothing

    Differentially Private Clustering: Tight Approximation Ratios

    Full text link
    We study the task of differentially private clustering. For several basic clustering problems, including Euclidean DensestBall, 1-Cluster, k-means, and k-median, we give efficient differentially private algorithms that achieve essentially the same approximation ratios as those that can be obtained by any non-private algorithm, while incurring only small additive errors. This improves upon existing efficient algorithms that only achieve some large constant approximation factors. Our results also imply an improved algorithm for the Sample and Aggregate privacy framework. Furthermore, we show that one of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.Comment: 60 pages, 1 tabl
    corecore