15,535 research outputs found

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before

    Monomial Testing and Applications

    Full text link
    In this paper, we devise two algorithms for the problem of testing qq-monomials of degree kk in any multivariate polynomial represented by a circuit, regardless of the primality of qq. One is an O(2k)O^*(2^k) time randomized algorithm. The other is an O(12.8k)O^*(12.8^k) time deterministic algorithm for the same qq-monomial testing problem but requiring the polynomials to be represented by tree-like circuits. Several applications of qq-monomial testing are also given, including a deterministic O(12.8mk)O^*(12.8^{mk}) upper bound for the mm-set kk-packing problem.Comment: 17 pages, 4 figures, submitted FAW-AAIM 2013. arXiv admin note: substantial text overlap with arXiv:1302.5898; and text overlap with arXiv:1007.2675, arXiv:1007.2678, arXiv:1007.2673 by other author

    Faster Deterministic Algorithms for Packing, Matching and tt-Dominating Set Problems

    Full text link
    In this paper, we devise three deterministic algorithms for solving the mm-set kk-packing, mm-dimensional kk-matching, and tt-dominating set problems in time O(5.44mk)O^*(5.44^{mk}), O(5.44(m1)k)O^*(5.44^{(m-1)k}) and O(5.44t)O^*(5.44^{t}), respectively. Although recently there has been remarkable progress on randomized solutions to those problems, our bounds make good improvements on the best known bounds for deterministic solutions to those problems.Comment: ISAAC13 Submission. arXiv admin note: substantial text overlap with arXiv:1303.047

    Quasiconvex Programming

    Full text link
    We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization technique in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics.Comment: 33 pages, 14 figure

    On Integer Programming, Discrepancy, and Convolution

    Full text link
    Integer programs with a constant number of constraints are solvable in pseudo-polynomial time. We give a new algorithm with a better pseudo-polynomial running time than previous results. Moreover, we establish a strong connection to the problem (min, +)-convolution. (min, +)-convolution has a trivial quadratic time algorithm and it has been conjectured that this cannot be improved significantly. We show that further improvements to our pseudo-polynomial algorithm for any fixed number of constraints are equivalent to improvements for (min, +)-convolution. This is a strong evidence that our algorithm's running time is the best possible. We also present a faster specialized algorithm for testing feasibility of an integer program with few constraints and for this we also give a tight lower bound, which is based on the SETH.Comment: A preliminary version appeared in the proceedings of ITCS 201
    corecore