1,191,537 research outputs found

    Logics for complexity classes

    Full text link
    A new syntactic characterization of problems complete via Turing reductions is presented. General canonical forms are developed in order to define such problems. One of these forms allows us to define complete problems on ordered structures, and another form to define them on unordered non-Aristotelian structures. Using the canonical forms, logics are developed for complete problems in various complexity classes. Evidence is shown that there cannot be any complete problem on Aristotelian structures for several complexity classes. Our approach is extended beyond complete problems. Using a similar form, a logic is developed to capture the complexity class NPcoNPNP\cap coNP which very likely contains no complete problem.Comment: This article has been accepted for publication in Logic Journal of IGPL Published by Oxford University Press; 23 pages, 2 figure

    Descriptive Complexity for Counting Complexity Classes

    Full text link
    Descriptive Complexity has been very successful in characterizing complexity classes of decision problems in terms of the properties definable in some logics. However, descriptive complexity for counting complexity classes, such as FP and #P, has not been systematically studied, and it is not as developed as its decision counterpart. In this paper, we propose a framework based on Weighted Logics to address this issue. Specifically, by focusing on the natural numbers we obtain a logic called Quantitative Second Order Logics (QSO), and show how some of its fragments can be used to capture fundamental counting complexity classes such as FP, #P and FPSPACE, among others. We also use QSO to define a hierarchy inside #P, identifying counting complexity classes with good closure and approximation properties, and which admit natural complete problems. Finally, we add recursion to QSO, and show how this extension naturally captures lower counting complexity classes such as #L

    New Classes of Distributed Time Complexity

    Full text link
    A number of recent papers -- e.g. Brandt et al. (STOC 2016), Chang et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC 2017), and Chang & Pettie (FOCS 2017) -- have advanced our understanding of one of the most fundamental questions in theory of distributed computing: what are the possible time complexity classes of LCL problems in the LOCAL model? In essence, we have a graph problem Π\Pi in which a solution can be verified by checking all radius-O(1)O(1) neighbourhoods, and the question is what is the smallest TT such that a solution can be computed so that each node chooses its own output based on its radius-TT neighbourhood. Here TT is the distributed time complexity of Π\Pi. The time complexity classes for deterministic algorithms in bounded-degree graphs that are known to exist by prior work are Θ(1)\Theta(1), Θ(logn)\Theta(\log^* n), Θ(logn)\Theta(\log n), Θ(n1/k)\Theta(n^{1/k}), and Θ(n)\Theta(n). It is also known that there are two gaps: one between ω(1)\omega(1) and o(loglogn)o(\log \log^* n), and another between ω(logn)\omega(\log^* n) and o(logn)o(\log n). It has been conjectured that many more gaps exist, and that the overall time hierarchy is relatively simple -- indeed, this is known to be the case in restricted graph families such as cycles and grids. We show that the picture is much more diverse than previously expected. We present a general technique for engineering LCL problems with numerous different deterministic time complexities, including Θ(logαn)\Theta(\log^{\alpha}n) for any α1\alpha\ge1, 2Θ(logαn)2^{\Theta(\log^{\alpha}n)} for any α1\alpha\le 1, and Θ(nα)\Theta(n^{\alpha}) for any α<1/2\alpha <1/2 in the high end of the complexity spectrum, and Θ(logαlogn)\Theta(\log^{\alpha}\log^* n) for any α1\alpha\ge 1, 2Θ(logαlogn)\smash{2^{\Theta(\log^{\alpha}\log^* n)}} for any α1\alpha\le 1, and Θ((logn)α)\Theta((\log^* n)^{\alpha}) for any α1\alpha \le 1 in the low end; here α\alpha is a positive rational number

    Separating NOF communication complexity classes RP and NP

    Full text link
    We provide a non-explicit separation of the number-on-forehead communication complexity classes RP and NP when the number of players is up to \delta log(n) for any \delta<1. Recent lower bounds on Set-Disjointness [LS08,CA08] provide an explicit separation between these classes when the number of players is only up to o(loglog(n))
    corecore