390 research outputs found

    Multi-triangulations as complexes of star polygons

    Full text link
    Maximal (k+1)(k+1)-crossing-free graphs on a planar point set in convex position, that is, kk-triangulations, have received attention in recent literature, with motivation coming from several interpretations of them. We introduce a new way of looking at kk-triangulations, namely as complexes of star polygons. With this tool we give new, direct, proofs of the fundamental properties of kk-triangulations, as well as some new results. This interpretation also opens-up new avenues of research, that we briefly explore in the last section.Comment: 40 pages, 24 figures; added references, update Section

    Perfect graphs of arbitrarily large clique-chromatic number

    Full text link
    We prove that there exist perfect graphs of arbitrarily large clique-chromatic number. These graphs can be obtained from cobipartite graphs by repeatedly gluing along cliques. This negatively answers a question raised by Duffus, Sands, Sauer, and Woodrow in [Two-coloring all two-element maximal antichains, J. Combinatorial Theory, Ser. A, 57 (1991), 109-116]

    Coloring d-Embeddable k-Uniform Hypergraphs

    Full text link
    This paper extends the scenario of the Four Color Theorem in the following way. Let H(d,k) be the set of all k-uniform hypergraphs that can be (linearly) embedded into R^d. We investigate lower and upper bounds on the maximum (weak and strong) chromatic number of hypergraphs in H(d,k). For example, we can prove that for d>2 there are hypergraphs in H(2d-3,d) on n vertices whose weak chromatic number is Omega(log n/log log n), whereas the weak chromatic number for n-vertex hypergraphs in H(d,d) is bounded by O(n^((d-2)/(d-1))) for d>2.Comment: 18 page
    • …
    corecore