250,527 research outputs found
Complex Support Vector Machines for Regression and Quaternary Classification
The paper presents a new framework for complex Support Vector Regression as
well as Support Vector Machines for quaternary classification. The method
exploits the notion of widely linear estimation to model the input-out relation
for complex-valued data and considers two cases: a) the complex data are split
into their real and imaginary parts and a typical real kernel is employed to
map the complex data to a complexified feature space and b) a pure complex
kernel is used to directly map the data to the induced complex feature space.
The recently developed Wirtinger's calculus on complex reproducing kernel
Hilbert spaces (RKHS) is employed in order to compute the Lagrangian and derive
the dual optimization problem. As one of our major results, we prove that any
complex SVM/SVR task is equivalent with solving two real SVM/SVR tasks
exploiting a specific real kernel which is generated by the chosen complex
kernel. In particular, the case of pure complex kernels leads to the generation
of new kernels, which have not been considered before. In the classification
case, the proposed framework inherently splits the complex space into four
parts. This leads naturally in solving the four class-task (quaternary
classification), instead of the typical two classes of the real SVM. In turn,
this rationale can be used in a multiclass problem as a split-class scenario
based on four classes, as opposed to the one-versus-all method; this can lead
to significant computational savings. Experiments demonstrate the effectiveness
of the proposed framework for regression and classification tasks that involve
complex data.Comment: Manuscript accepted in IEEE Transactions on Neural Networks and
Learning System
Machine Learning For In-Region Location Verification In Wireless Networks
In-region location verification (IRLV) aims at verifying whether a user is
inside a region of interest (ROI). In wireless networks, IRLV can exploit the
features of the channel between the user and a set of trusted access points. In
practice, the channel feature statistics is not available and we resort to
machine learning (ML) solutions for IRLV. We first show that solutions based on
either neural networks (NNs) or support vector machines (SVMs) and typical loss
functions are Neyman-Pearson (N-P)-optimal at learning convergence for
sufficiently complex learning machines and large training datasets . Indeed,
for finite training, ML solutions are more accurate than the N-P test based on
estimated channel statistics. Then, as estimating channel features outside the
ROI may be difficult, we consider one-class classifiers, namely auto-encoders
NNs and one-class SVMs, which however are not equivalent to the generalized
likelihood ratio test (GLRT), typically replacing the N-P test in the one-class
problem. Numerical results support the results in realistic wireless networks,
with channel models including path-loss, shadowing, and fading
Effective classifiers for detecting objects
Several state-of-the-art machine learning classifiers are compared for the purposes of object detection in complex images, using global image features derived from the Ohta color space and Local Binary Patterns. Image complexity in this sense refers to the degree to which the target objects are occluded and/or non-dominant (i.e. not in the foreground) in the image, and also the degree to which the images are cluttered with non-target objects. The results indicate that a voting ensemble of Support Vector Machines, Random Forests, and Boosted Decision Trees provide the best performance with AUC values of up to 0.92 and Equal Error Rate accuracies of up to 85.7% in stratified 10-fold cross validation experiments on the GRAZ02 complex image dataset
A support vector-based interval type-2 fuzzy system
In this paper, a new fuzzy regression model that is supported by support vector regression is presented. Type-2 fuzzy systems are able to tackle applications that have significant uncertainty. However general type-2 fuzzy systems are more complex than type-1 fuzzy systems. Support vector machines are similar to fuzzy systems in that they can also model systems that are non-linear in nature. In the proposed model the consequent parameters of type-2 fuzzy rules are learnt using support vector regression and an efficient closed-form type reduction strategy is used to simplify the computations. Support vector regression improved the generalisation performance of the fuzzy rule-based system in which the fuzzy rules were a set of interpretable IF-THEN rules. The performance of the proposed model was demonstrated by conducting case studies for the non-linear system approximation and prediction of chaotic time series. The model yielded promising results and the simulation results are compared to the results published in the area
A support vector-based interval type-2 fuzzy system
In this paper, a new fuzzy regression model that is supported by support vector regression is presented. Type-2 fuzzy systems are able to tackle applications that have significant uncertainty. However general type-2 fuzzy systems are more complex than type-1 fuzzy systems. Support vector machines are similar to fuzzy systems in that they can also model systems that are non-linear in nature. In the proposed model the consequent parameters of type-2 fuzzy rules are learnt using support vector regression and an efficient closed-form type reduction strategy is used to simplify the computations. Support vector regression improved the generalisation performance of the fuzzy rule-based system in which the fuzzy rules were a set of interpretable IF-THEN rules. The performance of the proposed model was demonstrated by conducting case studies for the non-linear system approximation and prediction of chaotic time series. The model yielded promising results and the simulation results are compared to the results published in the area
Nonlinear Channel Estimation for OFDM System by Complex LS-SVM under High Mobility Conditions
A nonlinear channel estimator using complex Least Square Support Vector
Machines (LS-SVM) is proposed for pilot-aided OFDM system and applied to Long
Term Evolution (LTE) downlink under high mobility conditions. The estimation
algorithm makes use of the reference signals to estimate the total frequency
response of the highly selective multipath channel in the presence of
non-Gaussian impulse noise interfering with pilot signals. Thus, the algorithm
maps trained data into a high dimensional feature space and uses the structural
risk minimization (SRM) principle to carry out the regression estimation for
the frequency response function of the highly selective channel. The
simulations show the effectiveness of the proposed method which has good
performance and high precision to track the variations of the fading channels
compared to the conventional LS method and it is robust at high speed mobility.Comment: 11 page
ANTIDS: Self-Organized Ant-based Clustering Model for Intrusion Detection System
Security of computers and the networks that connect them is increasingly
becoming of great significance. Computer security is defined as the protection
of computing systems against threats to confidentiality, integrity, and
availability. There are two types of intruders: the external intruders who are
unauthorized users of the machines they attack, and internal intruders, who
have permission to access the system with some restrictions. Due to the fact
that it is more and more improbable to a system administrator to recognize and
manually intervene to stop an attack, there is an increasing recognition that
ID systems should have a lot to earn on following its basic principles on the
behavior of complex natural systems, namely in what refers to
self-organization, allowing for a real distributed and collective perception of
this phenomena. With that aim in mind, the present work presents a
self-organized ant colony based intrusion detection system (ANTIDS) to detect
intrusions in a network infrastructure. The performance is compared among
conventional soft computing paradigms like Decision Trees, Support Vector
Machines and Linear Genetic Programming to model fast, online and efficient
intrusion detection systems.Comment: 13 pages, 3 figures, Swarm Intelligence and Patterns (SIP)- special
track at WSTST 2005, Muroran, JAPA
- …
