1,058,530 research outputs found
A new metalation complex for organic synthesis and polymerization reactions
Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds
The Pharmacological Potential of Mushrooms
This review describes pharmacologically active compounds from mushrooms. Compounds and complex substances with antimicrobial, antiviral, antitumor, antiallergic, immunomodulating, anti-inflammatory, antiatherogenic, hypoglycemic, hepatoprotective and central activities are covered, focusing on the review of recent literature. The production of mushrooms or mushroom compounds is discussed briefly
Neuroprotective effects of carnitinoid compounds in rodent cellular and in vivo models of mitochondrial complex I dysfunction
Rotenone-mediated mitochondrial complex I inhibition was used to model Parkinson’s disease-like syndrome in Lewis rats. Tyrosine hydroxylase immunolabeling demonstrated a decrease in the number of dopaminergic neurons as well as aberrant morphology in surviving neurons. Administration of carnitinoid compounds (synthetic lipoylcarnitine or butyrylcarnitine compounds) reduced dopaminergic neuronal cell loss with characteristic morphology observed in surviving neurons. In a rat primordial hippocampal cell line (H19-7/IGF-IR), rotenone treatment resulted in increased ROS and reduced cellular ATP, while co-treatment with lipoylcarnitine maintained ROS and ATP at control levels. These results illustrate the therapeutic potential of small-molecule carnitinoids in treating neurodegenerative diseases associated with mitochondrial dysfunction.https://mesford.ca/journals/cab/articles-on-biotechnology/neuroprotective-effects-of-carnitinoid-compounds-in-rodent-cellular-and-in-vivo-models-of-mitochondrial-complex-i-dysfunction/Published versio
Recommended from our members
Hydrophobic cis-platinum complexes efficiently incorporated into liposomes
The present invention involves the synthesis and use of new platinum compounds. These new platinum compounds are easy to encapsulate in liposomes at high efficiencies. They are further characterized as platinum (II) four coordinate complex having the formula: ##STR1## wherein R.sub.1 and R.sub.2 are carboxylato monoanions bearing a hydrophobic radical function or a single carboxylato dianion bearing a hydrophobic radical function and R.sub.3 is a vicinal diaminoalkane or vicinal diaminocycloalkane. The complex is substantially soluble in methanol or chloroform and substantially insoluble in water. Said complex may be incorporated into phospholipid liposomes. Such platinum complexes encapsulated in phospholipid liposomes are useful for chemotherapy of platinum complex-sensitive tumors.Board of Regents, University of Texas Syste
Slim and scum: Natural products from land and sea
To a natural-products chemist, the term "natural products" does not refer to all compounds from natural sources, as the name might imply. It is specifically used to refer to compounds known as secondary metabolites, structurally complex molecules, often of unknown function, with very limited biological distribution
Mitochondria as a Potential Antifungal Target for Isocyanide Compounds
The discovery of antibiotics and antifungals greatly impacted medicine and human health, allowing the effective treatment of infections that were previously deadly. However, due to routine and sometimes excessive usage of these compounds, the development of antimicrobial resistance has created a need for new antibiotic and antifungal compounds. Isocyanide compounds have been shown to have antibacterial, antifungal, and anti-cancer properties, but very little is known about their biochemical effects. Our research aims to understand the mechanism of action of isocyanide compounds. We have conducted a genetic screen of a Saccharomyces gene-deletion (“knockout”) collection on media containing an easily synthesized model isocyanide compound, para-nitrophenyl isocyanide (p-NPIC). This allowed us to identify genes which, when deleted, render the mutant strains resistant or hypersensitive to the compound. Based on our genetic screen for hypersensitive mutants, we hypothesize that the isocyanides impact mitochondrial function, specifically altering the function of the Cu++-containing respiratory complex, Cytochrome C Oxidase (Complex IV). Our findings provide new information on the mechanism(s) of action of this class of antimicrobials and will help guide the development of new molecules based on lead-compounds such as p-NPIC
Chemistry of Complex Compounds
Chemistry of Complex Compounds: Regular Curriculum for Higher Education Institution
Thermal rearrangements in the tetra-arylcyclopropene series
The literature provides many examples of thermal
rearrangements of small-ring compounds to yield
systems involving less bond-angle strain. In the
arylcyclopropene series these involve, in many
cases, fairly complex pathways, and only formalized
mechanisms have been suggested
Recommended from our members
GC-Recomposition-Olfactometry (GC-R) and multivariate study of three terpenoid compounds in the aroma profile of Angostura bitters.
Foods and beverage aroma results from multicomponent mixtures of volatile compounds present in the food that interact with olfactory receptors and produce a perceptual response in the brain. However, the perceptual interactions that occur when complex odor mixtures are combined are not well understood. Here we used Gas chromatography-Recomposition-Olfactometry (GC-R) to better understand the role that individual compounds have on the perceived sensory aroma of bitters. Bitters are the concentrated alcoholic extract of flavorful plant materials with a wide range of complex sensory and chemical aroma profiles that have not been extensively studied. Previously, we demonstrated that Angostura bitters are characterized by complex aroma attributes described as cola, ginger, orange peel, and black pepper and that the volatile composition of Angostura bitters is predominantly composed of terpenoids. Using GC-R to create in-instrument mixtures of the Angostura headspace extracts, the sensory attributes of Angostura extracts with linalool, α-terpinyl-acetate and caryophyllene omitted were evaluated. The omission experiments demonstrated direct and indirect effects of the individual compounds on the aroma attributes of Angostura bitters, through masking, additive, and synergistic interactions. Caryophyllene in particular, which was present in the headspace extracts at concentration only slightly above sensory threshold levels, had a large and unexpected impact on the sensory properties of the mixtures and may be most responsible for the aromas associated with the whole sample. The GC-R and statistical approaches used here provided valuable tools to reveal relationships among individual compounds and aroma attributes of foods that have not been currently theorized using existing analytical approaches
- …
