7,876,583 research outputs found

    Clustering in complex networks. I. General formalism

    Get PDF
    We develop a full theoretical approach to clustering in complex networks. A key concept is introduced, the edge multiplicity, that measures the number of triangles passing through an edge. This quantity extends the clustering coefficient in that it involves the properties of two --and not just one-- vertices. The formalism is completed with the definition of a three-vertex correlation function, which is the fundamental quantity describing the properties of clustered networks. The formalism suggests new metrics that are able to thoroughly characterize transitive relations. A rigorous analysis of several real networks, which makes use of the new formalism and the new metrics, is also provided. It is also found that clustered networks can be classified into two main groups: the {\it weak} and the {\it strong transitivity} classes. In the first class, edge multiplicity is small, with triangles being disjoint. In the second class, edge multiplicity is high and so triangles share many edges. As we shall see in the following paper, the class a network belongs to has strong implications in its percolation properties

    Matrix Models, Complex Geometry and Integrable Systems. I

    Full text link
    We consider the simplest gauge theories given by one- and two- matrix integrals and concentrate on their stringy and geometric properties. We remind general integrable structure behind the matrix integrals and turn to the geometric properties of planar matrix models, demonstrating that they are universally described in terms of integrable systems directly related to the theory of complex curves. We study the main ingredients of this geometric picture, suggesting that it can be generalized beyond one complex dimension, and formulate them in terms of the quasiclassical integrable systems, solved by construction of tau-functions or prepotentials. The complex curves and tau-functions of one- and two- matrix models are discussed in detail.Comment: 52 pages, 19 figures, based on several lecture courses and the talks at "Complex geometry and string theory" and the Polivanov memorial seminar; misprints corrected, references adde

    2 \pi-grafting and complex projective structures, I

    Full text link
    Let SS be a closed oriented surface of genus at least two. Gallo, Kapovich, and Marden asked if 2\pi-graftings produce all projective structures on SS with arbitrarily fixed holonomy (Grafting Conjecture). In this paper, we show that the conjecture holds true "locally" in the space GLGL of geodesic laminations on SS via a natural projection of projective structures on SS into GLGL in the Thurston coordinates. In the sequel paper, using this local solution, we prove the conjecture for generic holonomy.Comment: 57 pages, 10 figures. To appear in Geometry & Topolog

    Non-isolated Hypersurface Singularities and L\^e Cycles

    Full text link
    In this series of lectures, I will discuss results for complex hypersurfaces with non-isolated singularities. In Lecture 1, I will review basic definitions and results on complex hypersurfaces, and then present classical material on the Milnor fiber and fibration. In Lecture 2, I will present basic results from Morse theory, and use them to prove some results about complex hypersurfaces, including a proof of L\^e's attaching result for Milnor fibers of non-isolated hypersurface singularities. This will include defining the relative polar curve. Lecture 3 will begin with a discussion of intersection cycles for proper intersections inside a complex manifold, and then move on to definitions and basic results on L\^e cycles and L\^e numbers of non-isolated hypersurface singularities. Lecture 4 will explain the topological importance of L\^e cycles and numbers, and then I will explain, informally, the relationship between the L\^e cycles and the complex of sheaves of vanishing cycles.Comment: Notes from a series of lectures from the S\~ao Carlos singularities meeting of 2014. Revision made to Exercise 3.1 (a

    Geometry of the Complex of Curves I: Hyperbolicity

    Full text link
    The Complex of Curves on a Surface is a simplicial complex whose vertices are homotopy classes of simple closed curves, and whose simplices are sets of homotopy classes which can be realized disjointly. It is not hard to see that the complex is finite-dimensional, but locally infinite. It was introduced by Harvey as an analogy, in the context of Teichmuller space, for Tits buildings for symmetric spaces, and has been studied by Harer and Ivanov as a tool for understanding mapping class groups of surfaces. In this paper we prove that, endowed with a natural metric, the complex is hyperbolic in the sense of Gromov. In a certain sense this hyperbolicity is an explanation of why the Teichmuller space has some negative-curvature properties in spite of not being itself hyperbolic: Hyperbolicity in the Teichmuller space fails most obviously in the regions corresponding to surfaces where some curve is extremely short. The complex of curves exactly encodes the intersection patterns of this family of regions (it is the "nerve" of the family), and we show that its hyperbolicity means that the Teichmuller space is "relatively hyperbolic" with respect to this family. A similar relative hyperbolicity result is proved for the mapping class group of a surface. We also show that the action of pseudo-Anosov mapping classes on the complex is hyperbolic, with a uniform bound on translation distance.Comment: Revised version of IMS preprint. 36 pages, 6 Figure
    corecore