483,911 research outputs found

    Active colloids in complex fluids

    Get PDF
    We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer induces time dependent, three dimensional fluid flows, that can modify the medium (fluid) rheological properties. This two-way, non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension properties, emergent collective behavior, and transport of passive tracer particles. Recent exciting theoretical results and current debate on quantifying these complex active fluids highlight the need for conceptually simple experiments to guide our understanding.Comment: 6 figure

    Lattice Boltzmann Models for Complex Fluids

    Full text link
    We present various Lattice Boltzmann Models which reproduce the effects of rough walls, shear thinning and granular flow. We examine the boundary layers generated by the roughness of the walls. Shear thinning produces plug flow with a sharp density contrast at the boundaries. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.Comment: 11 pages, plain TeX, preprint HLRZ 23/9

    Simple Fluids with Complex Phase Behavior

    Full text link
    We find that a system of particles interacting through a simple isotropic potential with a softened core is able to exhibit a rich phase behavior including: a liquid-liquid phase transition in the supercooled phase, as has been suggested for water; a gas-liquid-liquid triple point; a freezing line with anomalous reentrant behavior. The essential ingredient leading to these features resides in that the potential investigated gives origin to two effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur

    Microfluidic-SANS: flow processing of complex fluids

    Get PDF
    Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background ([Image: see text]), broad solvent compatibility and high pressure tolerance (≈3–15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01–0.3 Å(−1), corresponding to real space dimensions of [Image: see text]. We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D(2)O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter

    Rotational microrheology of Maxwell fluids using micron-sized wires

    Full text link
    We demonstrate a simple method for rotational microrheology in complex fluids, using micrometric wires. The three-dimensional rotational Brownian motion of the wires suspended in Maxwell fluids is measured from their projection on the focal plane of a microscope. We analyze the mean-squared angular displacement of the wires of length between 1 and 40 microns. The viscoelastic properties of the suspending fluids are extracted from this analysis and found to be in good agreement with macrorheology data. Viscosities of simple and complex fluids between 0.01 and 30 Pa.s could be measured. As for the elastic modulus, values up to ~ 5 Pa could be determined. This simple technique, allowing for a broad range of probed length scales, opens new perspectives in microrheology of heterogeneous materials such as gels, glasses and cells.Comment: to appear in Soft Matte

    Criticality in strongly correlated fluids

    Full text link
    In this brief review I will discuss criticality in strongly correlated fluids. Unlike simple fluids, molecules of which interact through short ranged isotropic potential, particles of strongly correlated fluids usually interact through long ranged forces of Coulomb or dipolar form. While for simple fluids mechanism of phase separation into liquid and gas was elucidated by van der Waals more than a century ago, the universality class of strongly correlated fluids, or in some cases even existence of liquid-gas phase separation remains uncertain.Comment: Proceedings of Scaling Concepts and Complex Systems, Merida, Mexic

    Probing structural relaxation in complex fluids by critical fluctuations

    Full text link
    Complex fluids, such as polymer solutions and blends, colloids and gels, are of growing interest in fundamental and applied soft-condensed-matter science. A common feature of all such systems is the presence of a mesoscopic structural length scale intermediate between atomic and macroscopic scales. This mesoscopic structure of complex fluids is often fragile and sensitive to external perturbations. Complex fluids are frequently viscoelastic (showing a combination of viscous and elastic behaviour) with their dynamic response depending on the time and length scales. Recently, non-invasive methods to infer the rheological response of complex fluids have gained popularity through the technique of microrheology, where the diffusion of probe spheres in a viscoelastic fluid is monitored with the aid of light scattering or microscopy. Here we propose an alternative to traditional microrheology that does not require doping of probe particles in the fluid (which can sometimes drastically alter the molecular environment). Instead, our proposed method makes use of the phenomenon of "avoided crossing" between modes associated with the structural relaxation and critical fluctuations that are spontaneously generated in the system.Comment: 4 pages, 4 figure
    corecore