483,911 research outputs found
Active colloids in complex fluids
We review recent work on active colloids or swimmers, such as self-propelled
microorganisms, phoretic colloidal particles, and artificial micro-robotic
systems, moving in fluid-like environments. These environments can be
water-like and Newtonian but can frequently contain macromolecules, flexible
polymers, soft cells, or hard particles, which impart complex, nonlinear
rheological features to the fluid. While significant progress has been made on
understanding how active colloids move and interact in Newtonian fluids, little
is known on how active colloids behave in complex and non-Newtonian fluids. An
emerging literature is starting to show how fluid rheology can dramatically
change the gaits and speeds of individual swimmers. Simultaneously, a moving
swimmer induces time dependent, three dimensional fluid flows, that can modify
the medium (fluid) rheological properties. This two-way, non-linear coupling at
microscopic scales has profound implications at meso- and macro-scales: steady
state suspension properties, emergent collective behavior, and transport of
passive tracer particles. Recent exciting theoretical results and current
debate on quantifying these complex active fluids highlight the need for
conceptually simple experiments to guide our understanding.Comment: 6 figure
Lattice Boltzmann Models for Complex Fluids
We present various Lattice Boltzmann Models which reproduce the effects of
rough walls, shear thinning and granular flow. We examine the boundary layers
generated by the roughness of the walls. Shear thinning produces plug flow with
a sharp density contrast at the boundaries. Density waves are spontaneously
generated when the viscosity has a nonlinear dependence on density which
characterizes granular flow.Comment: 11 pages, plain TeX, preprint HLRZ 23/9
Simple Fluids with Complex Phase Behavior
We find that a system of particles interacting through a simple isotropic
potential with a softened core is able to exhibit a rich phase behavior
including: a liquid-liquid phase transition in the supercooled phase, as has
been suggested for water; a gas-liquid-liquid triple point; a freezing line
with anomalous reentrant behavior. The essential ingredient leading to these
features resides in that the potential investigated gives origin to two
effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur
Microfluidic-SANS: flow processing of complex fluids
Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background ([Image: see text]), broad solvent compatibility and high pressure tolerance (≈3–15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01–0.3 Å(−1), corresponding to real space dimensions of [Image: see text]. We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D(2)O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter
Rotational microrheology of Maxwell fluids using micron-sized wires
We demonstrate a simple method for rotational microrheology in complex
fluids, using micrometric wires. The three-dimensional rotational Brownian
motion of the wires suspended in Maxwell fluids is measured from their
projection on the focal plane of a microscope. We analyze the mean-squared
angular displacement of the wires of length between 1 and 40 microns. The
viscoelastic properties of the suspending fluids are extracted from this
analysis and found to be in good agreement with macrorheology data. Viscosities
of simple and complex fluids between 0.01 and 30 Pa.s could be measured. As for
the elastic modulus, values up to ~ 5 Pa could be determined. This simple
technique, allowing for a broad range of probed length scales, opens new
perspectives in microrheology of heterogeneous materials such as gels, glasses
and cells.Comment: to appear in Soft Matte
Criticality in strongly correlated fluids
In this brief review I will discuss criticality in strongly correlated
fluids. Unlike simple fluids, molecules of which interact through short ranged
isotropic potential, particles of strongly correlated fluids usually interact
through long ranged forces of Coulomb or dipolar form. While for simple fluids
mechanism of phase separation into liquid and gas was elucidated by van der
Waals more than a century ago, the universality class of strongly correlated
fluids, or in some cases even existence of liquid-gas phase separation remains
uncertain.Comment: Proceedings of Scaling Concepts and Complex Systems, Merida, Mexic
Probing structural relaxation in complex fluids by critical fluctuations
Complex fluids, such as polymer solutions and blends, colloids and gels, are
of growing interest in fundamental and applied soft-condensed-matter science. A
common feature of all such systems is the presence of a mesoscopic structural
length scale intermediate between atomic and macroscopic scales. This
mesoscopic structure of complex fluids is often fragile and sensitive to
external perturbations. Complex fluids are frequently viscoelastic (showing a
combination of viscous and elastic behaviour) with their dynamic response
depending on the time and length scales. Recently, non-invasive methods to
infer the rheological response of complex fluids have gained popularity through
the technique of microrheology, where the diffusion of probe spheres in a
viscoelastic fluid is monitored with the aid of light scattering or microscopy.
Here we propose an alternative to traditional microrheology that does not
require doping of probe particles in the fluid (which can sometimes drastically
alter the molecular environment). Instead, our proposed method makes use of the
phenomenon of "avoided crossing" between modes associated with the structural
relaxation and critical fluctuations that are spontaneously generated in the
system.Comment: 4 pages, 4 figure
- …
