55,979 research outputs found

    CONFIGR: A Vision-Based Model for Long-Range Figure Completion

    Full text link
    CONFIGR (CONtour FIgure GRound) is a computational model based on principles of biological vision that completes sparse and noisy image figures. Within an integrated vision/recognition system, CONFIGR posits an initial recognition stage which identifies figure pixels from spatially local input information. The resulting, and typically incomplete, figure is fed back to the “early vision” stage for long-range completion via filling-in. The reconstructed image is then re-presented to the recognition system for global functions such as object recognition. In the CONFIGR algorithm, the smallest independent image unit is the visible pixel, whose size defines a computational spatial scale. Once pixel size is fixed, the entire algorithm is fully determined, with no additional parameter choices. Multi-scale simulations illustrate the vision/recognition system. Open-source CONFIGR code is available online, but all examples can be derived analytically, and the design principles applied at each step are transparent. The model balances filling-in as figure against complementary filling-in as ground, which blocks spurious figure completions. Lobe computations occur on a subpixel spatial scale. Originally designed to fill-in missing contours in an incomplete image such as a dashed line, the same CONFIGR system connects and segments sparse dots, and unifies occluded objects from pieces locally identified as figure in the initial recognition stage. The model self-scales its completion distances, filling-in across gaps of any length, where unimpeded, while limiting connections among dense image-figure pixel groups that already have intrinsic form. Long-range image completion promises to play an important role in adaptive processors that reconstruct images from highly compressed video and still camera images.Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-0216); National Science Foundation (SBE-0354378); Office of Naval Research (N000014-01-1-0624

    Perceptual organization and visual awareness: the case of amodal completion

    Get PDF
    We investigated the involvement of visual awareness in amodal completion, and specifically, whether visual awareness plays a differential role in local versus global completion, using a primed shape discrimination paradigm and the color-opponent flicker technique to render the prime invisible. In four experiments, participants discriminated the shape of a target preceded by a partly occluded or a neutral prime. All primes were divergent occlusion patterns in which the local completion is based on good continuation of the contours at the point of occlusion and the global completion is based on maximum symmetry. The target corresponded to the shape that could arise as a result of local or global completion of the occluded prime. For each experiment with an invisible prime we conducted a version with a visible prime. Our results suggest that local completion, but not global completion, of a partly occluded shape can take place in the absence of visual awareness, but apparently only when the visible occluded shape generates a single, local completion. No completion, either local or global, appears to take place in the absence of visual awareness when the visible occluded shape generates multiple completions. The implications of these results to the differential role of visual awareness in local and global completions and to the relationship between multiple completions and unconscious amodal completions are discussed

    From Stereogram to Surface: How the Brain Sees the World in Depth

    Full text link
    When we look at a scene, how do we consciously see surfaces infused with lightness and color at the correct depths? Random Dot Stereograms (RDS) probe how binocular disparity between the two eyes can generate such conscious surface percepts. Dense RDS do so despite the fact that they include multiple false binocular matches. Sparse stereograms do so even across large contrast-free regions with no binocular matches. Stereograms that define occluding and occluded surfaces lead to surface percepts wherein partially occluded textured surfaces are completed behind occluding textured surfaces at a spatial scale much larger than that of the texture elements themselves. Earlier models suggest how the brain detects binocular disparity, but not how RDS generate conscious percepts of 3D surfaces. A neural model predicts how the layered circuits of visual cortex generate these 3D surface percepts using interactions between visual boundary and surface representations that obey complementary computational rules.Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (EIA-01-30851, SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Filling-in the Forms: Surface and Boundary Interactions in Visual Cortex

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (NOOOI4-95-l-0409); Office of Naval Research (NOOO14-95-1-0657)

    Boundary, Brightness, and Depth Interactions During Preattentive Representation and Attentive Recognition of Figure and Ground

    Full text link
    This article applies a recent theory of 3-D biological vision, called FACADE Theory, to explain several percepts which Kanizsa pioneered. These include 3-D pop-out of an occluding form in front of an occluded form, leading to completion and recognition of the occluded form; 3-D transparent and opaque percepts of Kanizsa squares, with and without Varin wedges; and interactions between percepts of illusory contours, brightness, and depth in response to 2-D Kanizsa images. These explanations clarify how a partially occluded object representation can be completed for purposes of object recognition, without the completed part of the representation necessarily being seen. The theory traces these percepts to neural mechanisms that compensate for measurement uncertainty and complementarity at individual cortical processing stages by using parallel and hierarchical interactions among several cortical processing stages. These interactions are modelled by a Boundary Contour System (BCS) that generates emergent boundary segmentations and a complementary Feature Contour System (FCS) that fills-in surface representations of brightness, color, and depth. The BCS and FCS interact reciprocally with an Object Recognition System (ORS) that binds BCS boundary and FCS surface representations into attentive object representations. The BCS models the parvocellular LGN→Interblob→Interstripe→V4 cortical processing stream, the FCS models the parvocellular LGN→Blob→Thin Stripe→V4 cortical processing stream, and the ORS models inferotemporal cortex.Air Force Office of Scientific Research (F49620-92-J-0499); Defense Advanced Research Projects Agency (N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100

    Neural Models of Seeing and Thinking

    Full text link
    Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Figure-Ground Separation by Visual Cortex

    Full text link
    Office of Naval Research (N00014-95-1-0109, N00014-95-1-0657

    The effect of transparency on recognition of overlapping objects

    Get PDF
    Are overlapping objects easier to recognize when the objects are transparent or opaque? It is important to know whether the transparency of X-ray images of luggage contributes to the difficulty in searching those images for targets. Transparency provides extra information about objects that would normally be occluded but creates potentially ambiguous depth relations at the region of overlap. Two experiments investigated the threshold durations at which adult participants could accurately name pairs of overlapping objects that were opaque or transparent. In Experiment 1, the transparent displays included monocular cues to relative depth. Recognition of the back object was possible at shorter durations for transparent displays than for opaque displays. In Experiment 2, the transparent displays had no monocular depth cues. There was no difference in the duration at which the back object was recognized across transparent and opaque displays. The results of the two experiments suggest that transparent displays, even though less familiar than opaque displays, do not make object recognition more difficult, and possibly show a benefit. These findings call into question the importance of edge junctions in object recognitio

    Form Perception

    Full text link
    National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Neural Dynamics of 3-D Surface Perception: Figure-Ground Separation and Lightness Perception

    Full text link
    This article develops the FACADE theory of three-dimensional (3-D) vision to simulate data concerning how two-dimensional (2-D) pictures give rise to 3-D percepts of occluded and occluding surfaces. The theory suggests how geometrical and contrastive properties of an image can either cooperate or compete when forming the boundary and surface representations that subserve conscious visual percepts. Spatially long-range cooperation and short-range competition work together to separate boundaries of occluding ligures from their occluded neighbors, thereby providing sensitivity to T-junctions without the need to assume that T-junction "detectors" exist. Both boundary and surface representations of occluded objects may be amodaly completed, while the surface representations of unoccluded objects become visible through modal processes. Computer simulations include Bregman-Kanizsa figure-ground separation, Kanizsa stratification, and various lightness percepts, including the Munker-White, Benary cross, and checkerboard percepts.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI 94-01659, IRI 97-20333); Office of Naval Research (N00014-92-J-1309, N00014-95-1-0657
    • …
    corecore