10,469 research outputs found

    The Universal Theory of First Order Algebras and Various Reducts

    Full text link
    First order formulas in a relational signature can be considered as operations on the relations of an underlying set, giving rise to multisorted algebras we call first order algebras. We present universal axioms so that an algebra satisfies the axioms iff it embeds into a first order algebra. Importantly, our argument is modular and also works for, e.g., the positive existential algebras (where we restrict attention to the positive existential formulas) and the quantifier-free algebras. We also explain the relationship to theories, and indicate how to add in function symbols.Comment: 30 page

    The Complexity of Satisfiability for Sub-Boolean Fragments of ALC

    Full text link
    The standard reasoning problem, concept satisfiability, in the basic description logic ALC is PSPACE-complete, and it is EXPTIME-complete in the presence of unrestricted axioms. Several fragments of ALC, notably logics in the FL, EL, and DL-Lite family, have an easier satisfiability problem; sometimes it is even tractable. All these fragments restrict the use of Boolean operators in one way or another. We look at systematic and more general restrictions of the Boolean operators and establish the complexity of the concept satisfiability problem in the presence of axioms. We separate tractable from intractable cases.Comment: 17 pages, accepted (in short version) to Description Logic Workshop 201

    Model companions of theories with an automorphism

    Full text link
    For a theory TT in L,TσL, T_\sigma is the theory of the models of TT with an automorphism σ\sigma. If TT is an unstable model complete theory without the independence property, then TσT_\sigma has no model companion. If TT is an unstable model complete theory and TσT_\sigma has the amalgamation property, then TσT_\sigma has no model companion. If TT is model complete and has the fcp, then TσT_\sigma has no model completion

    The Axiomatic Structure of Empirical Content

    Get PDF
    In this paper, we provide a formal framework for studying the empirical content of a given theory. We define the falsifiable closure of a theory to be the least weakening of the theory that makes only falsifiable claims. The falsifiable closure is our notion of empirical content. We prove that the empirical content of a theory can be exactly captured by a certain kind of axiomatization, one that uses axioms which are universal negations of conjunctions of atomic formulas. The falsifiable closure operator has the structure of a topological closure, which has implications, for example, for the behavior of joint vis a vis single hypotheses. The ideas here are useful for understanding theories whose empirical content is well-understood (for example, we apply our framework to revealed preference theory, and Afriat's theorem), but they can also be applied to theories with no known axiomatization. We present an application to the theory of multiple selves, with a fixed finite set of selves and where selves are aggregated according to a neutral rule satisfying independence of irrelevant alternatives. We show that multiple selves theories are fully falsifiable, in the sense that they are equivalent to their empirical content

    Partial Horn logic and cartesian categories

    Get PDF
    A logic is developed in which function symbols are allowed to represent partial functions. It has the usual rules of logic (in the form of a sequent calculus) except that the substitution rule has to be modified. It is developed here in its minimal form, with equality and conjunction, as “partial Horn logic”. Various kinds of logical theory are equivalent: partial Horn theories, “quasi-equational” theories (partial Horn theories without predicate symbols), cartesian theories and essentially algebraic theories. The logic is sound and complete with respect to models in , and sound with respect to models in any cartesian (finite limit) category. The simplicity of the quasi-equational form allows an easy predicative constructive proof of the free partial model theorem for cartesian theories: that if a theory morphism is given from one cartesian theory to another, then the forgetful (reduct) functor from one model category to the other has a left adjoint. Various examples of quasi-equational theory are studied, including those of cartesian categories and of other classes of categories. For each quasi-equational theory another, , is constructed, whose models are cartesian categories equipped with models of . Its initial model, the “classifying category” for , has properties similar to those of the syntactic category, but more precise with respect to strict cartesian functors
    corecore