5,839 research outputs found

    Complete Solutions for a Combinatorial Puzzle in Linear Time

    Full text link
    In this paper we study a single player game consisting of nn black checkers and mm white checkers, called shifting the checkers. We have proved that the minimum number of steps needed to play the game for general nn and mm is nm+n+mnm + n + m. We have also presented an optimal algorithm to generate an optimal move sequence of the game consisting of nn black checkers and mm white checkers, and finally, we present an explicit solution for the general game

    A Global Approach for Solving Edge-Matching Puzzles

    Full text link
    We consider apictorial edge-matching puzzles, in which the goal is to arrange a collection of puzzle pieces with colored edges so that the colors match along the edges of adjacent pieces. We devise an algebraic representation for this problem and provide conditions under which it exactly characterizes a puzzle. Using the new representation, we recast the combinatorial, discrete problem of solving puzzles as a global, polynomial system of equations with continuous variables. We further propose new algorithms for generating approximate solutions to the continuous problem by solving a sequence of convex relaxations

    Tractable Optimization Problems through Hypergraph-Based Structural Restrictions

    Full text link
    Several variants of the Constraint Satisfaction Problem have been proposed and investigated in the literature for modelling those scenarios where solutions are associated with some given costs. Within these frameworks computing an optimal solution is an NP-hard problem in general; yet, when restricted over classes of instances whose constraint interactions can be modelled via (nearly-)acyclic graphs, this problem is known to be solvable in polynomial time. In this paper, larger classes of tractable instances are singled out, by discussing solution approaches based on exploiting hypergraph acyclicity and, more generally, structural decomposition methods, such as (hyper)tree decompositions

    Computational Complexity for Physicists

    Full text link
    These lecture notes are an informal introduction to the theory of computational complexity and its links to quantum computing and statistical mechanics.Comment: references updated, reprint available from http://itp.nat.uni-magdeburg.de/~mertens/papers/complexity.shtm
    • …
    corecore