196,919 research outputs found

    A Constructive Algorithm for Decomposing a Tensor into a Finite Sum of Orthonormal Rank-1 Terms

    Get PDF
    We propose a constructive algorithm that decomposes an arbitrary real tensor into a finite sum of orthonormal rank-1 outer products. The algorithm, named TTr1SVD, works by converting the tensor into a tensor-train rank-1 (TTr1) series via the singular value decomposition (SVD). TTr1SVD naturally generalizes the SVD to the tensor regime with properties such as uniqueness for a fixed order of indices, orthogonal rank-1 outer product terms, and easy truncation error quantification. Using an outer product column table it also allows, for the first time, a complete characterization of all tensors orthogonal with the original tensor. Incidentally, this leads to a strikingly simple constructive proof showing that the maximum rank of a real 2×2×22 \times 2 \times 2 tensor over the real field is 3. We also derive a conversion of the TTr1 decomposition into a Tucker decomposition with a sparse core tensor. Numerical examples illustrate each of the favorable properties of the TTr1 decomposition.Comment: Added subsection on orthogonal complement tensors. Added constructive proof of maximal CP-rank of a 2x2x2 tensor. Added perturbation of singular values result. Added conversion of the TTr1 decomposition to the Tucker decomposition. Added example that demonstrates how the rank behaves when subtracting rank-1 terms. Added example with exponential decaying singular value

    Symplectic spreads, planar functions and mutually unbiased bases

    Full text link
    In this paper we give explicit descriptions of complete sets of mutually unbiased bases (MUBs) and orthogonal decompositions of special Lie algebras sln(C)sl_n(\mathbb{C}) obtained from commutative and symplectic semifields, and from some other non-semifield symplectic spreads. Relations between various constructions are also studied. We show that the automorphism group of a complete set of MUBs is isomorphic to the automorphism group of the corresponding orthogonal decomposition of the Lie algebra sln(C)sl_n(\mathbb{C}). In the case of symplectic spreads this automorphism group is determined by the automorphism group of the spread. By using the new notion of pseudo-planar functions over fields of characteristic two we give new explicit constructions of complete sets of MUBs.Comment: 20 page

    Modal decomposition of astronomical images with application to shapelets

    Full text link
    The decomposition of an image into a linear combination of digitised basis functions is an everyday task in astronomy. A general method is presented for performing such a decomposition optimally into an arbitrary set of digitised basis functions, which may be linearly dependent, non-orthogonal and incomplete. It is shown that such circumstances may result even from the digitisation of continuous basis functions that are orthogonal and complete. In particular, digitised shapelet basis functions are investigated and are shown to suffer from such difficulties. As a result the standard method of performing shapelet analysis produces unnecessarily inaccurate decompositions. The optimal method presented here is shown to yield more accurate decompositions in all cases.Comment: 12 pages, 17 figures, submitted to MNRA
    corecore