2,362 research outputs found

    Ontology-Based Data Access and Integration

    Get PDF
    An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates. In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used

    Using Ontologies for Semantic Data Integration

    Get PDF
    While big data analytics is considered as one of the most important paths to competitive advantage of today’s enterprises, data scientists spend a comparatively large amount of time in the data preparation and data integration phase of a big data project. This shows that data integration is still a major challenge in IT applications. Over the past two decades, the idea of using semantics for data integration has become increasingly crucial, and has received much attention in the AI, database, web, and data mining communities. Here, we focus on a specific paradigm for semantic data integration, called Ontology-Based Data Access (OBDA). The goal of this paper is to provide an overview of OBDA, pointing out both the techniques that are at the basis of the paradigm, and the main challenges that remain to be addressed

    Equality-friendly well-founded semantics and applications to description logics

    Get PDF
    We tackle the problem of defining a well-founded semantics (WFS) for Datalog rules with existentially quantified variables in their heads and nega- tions in their bodies. In particular, we provide a WFS for the recent Datalog± family of ontology languages, which covers several important description logics (DLs). To do so, we generalize Datalog± by non-stratified nonmonotonic nega- tion in rule bodies, and we define a WFS for this generalization via guarded fixed point logic. We refer to this approach as equality-friendly WFS, since it has the advantage that it does not make the unique name assumption (UNA); this brings it close to OWL and its profiles as well as typical DLs, which also do not make the UNA. We prove that for guarded Datalog± with negation under the equality- friendly WFS, conjunctive query answering is decidable, and we provide precise complexity results for this problem. From these results, we obtain precise defi- nitions of the standard WFS extensions of EL and of members of the DL-Lite family, as well as corresponding complexity results for query answering

    A pragmatic approach to semantic repositories benchmarking

    Get PDF
    The aim of this paper is to benchmark various semantic repositories in order to evaluate their deployment in a commercial image retrieval and browsing application. We adopt a two-phase approach for evaluating the target semantic repositories: analytical parameters such as query language and reasoning support are used to select the pool of the target repositories, and practical parameters such as load and query response times are used to select the best match to application requirements. In addition to utilising a widely accepted benchmark for OWL repositories (UOBM), we also use a real-life dataset from the target application, which provides us with the opportunity of consolidating our findings. A distinctive advantage of this benchmarking study is that the essential requirements for the target system such as the semantic expressivity and data scalability are clearly defined, which allows us to claim contribution to the benchmarking methodology for this class of applications

    Ontology-based data access with databases: a short course

    Get PDF
    Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables
    corecore