57 research outputs found

    Algebraic Methods in Computational Complexity

    Get PDF
    Computational Complexity is concerned with the resources that are required for algorithms to detect properties of combinatorial objects and structures. It has often proven true that the best way to argue about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. In some of the most exciting recent progress in Computational Complexity the algebraic theme still plays a central role. There have been significant recent advances in algebraic circuit lower bounds, and the so-called chasm at depth 4 suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model (and these are tied to central questions regarding the power of randomness in computation). Also the areas of derandomization and coding theory have experimented important advances. The seminar aimed to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic methods in a variety of settings. Researchers in these areas are relying on ever more sophisticated and specialized mathematics and the goal of the seminar was to play an important role in educating a diverse community about the latest new techniques

    On the black-box complexity of Sperner's Lemma

    Full text link
    We present several results on the complexity of various forms of Sperner's Lemma in the black-box model of computing. We give a deterministic algorithm for Sperner problems over pseudo-manifolds of arbitrary dimension. The query complexity of our algorithm is linear in the separation number of the skeleton graph of the manifold and the size of its boundary. As a corollary we get an O(n)O(\sqrt{n}) deterministic query algorithm for the black-box version of the problem {\bf 2D-SPERNER}, a well studied member of Papadimitriou's complexity class PPAD. This upper bound matches the Ω(n)\Omega(\sqrt{n}) deterministic lower bound of Crescenzi and Silvestri. The tightness of this bound was not known before. In another result we prove for the same problem an Ω(n4)\Omega(\sqrt[4]{n}) lower bound for its probabilistic, and an Ω(n8)\Omega(\sqrt[8]{n}) lower bound for its quantum query complexity, showing that all these measures are polynomially related.Comment: 16 pages with 1 figur

    Secrecy without Perfect Randomness: Cryptography with (Bounded) Weak Sources

    Get PDF
    Cryptographic protocols are commonly designed and their security proven under the assumption that the protocol parties have access to perfect (uniform) randomness. Physical randomness sources deployed in practical implementations of these protocols often fall short in meeting this assumption, but instead provide only a steady stream of bits with certain high entropy. Trying to ground cryptographic protocols on such imperfect, weaker sources of randomness has thus far mostly given rise to a multitude of impossibility results, including the impossibility to construct provably secure encryption, commitments, secret sharing, and zero-knowledge proofs based solely on a weak source. More generally, indistinguishability-based properties break down for such weak sources. In this paper, we show that the loss of security induced by using a weak source can be meaningfully quantified if the source is bounded, e.g., for the well-studied Santha-Vazirna (SV) sources. The quantification relies on a novel relaxation of indistinguishability by a quantitative parameter. We call the resulting notion differential indistinguishability in order to reflect its structural similarity to differential privacy. More concretely, we prove that indistinguishability with uniform randomness implies differential indistinguishability with weak randomness. We show that if the amount of weak randomness is limited (e.g., by using it only to seed a PRG), all cryptographic primitives and protocols still achieve differential indistinguishability

    A Survey of Quantum Property Testing

    Get PDF
    The area of property testing tries to design algorithms that can efficiently handle very large amounts of data: given a large object that either has a certain property or is somehow “far” from having that property, a tester should efficiently distinguish between these two cases. In this survey we describe recent results obtained for quantum property testing. This area naturally falls into three parts. First, we may consider quantum testers for properties of classical objects. We survey the main examples known where quantum testers can be much (sometimes exponentially) more efficient than classical testers. Second, we may consider classical testers of quantum objects. This is the situation that arises for instance when one is trying to determine if quantum states or operations do what they are supposed to do, based only on classical input-output behavior. Finally, we may also consider quantum testers for properties of quantum objects, such as states or operations. We survey known bounds on testing various natural properties, such as whether two states are equal, whether a state is separable, whether two operations commute, etc. We also highlight connections to other areas of quantum information theory and mention a number of open questions. Contents
    • …
    corecore