11 research outputs found

    Complementary sum sampling for likelihood approximation in large scale classification

    Get PDF
    We consider training probabilistic classifiers in the case that the number of classes is too large to perform exact normalisation over all classes. We show that the source of high variance in standard sampling approximations is due to simply not including the correct class of the datapoint into the approximation. To account for this we explicitly sum over a subset of classes and sample the remaining. We show that this simple approach is competitive with recently introduced non likelihood-based approximations

    Embedding Cardinality Constraints in Neural Link Predictors

    Get PDF
    Neural link predictors learn distributed representations of entities and relations in a knowledge graph. They are remarkably powerful in the link prediction and knowledge base completion tasks, mainly due to the learned representations that capture important statistical dependencies in the data. Recent works in the area have focused on either designing new scoring functions or incorporating extra information into the learning process to improve the representations. Yet the representations are mostly learned from the observed links between entities, ignoring commonsense or schema knowledge associated with the relations in the graph. A fundamental aspect of the topology of relational data is the cardinality information, which bounds the number of predictions given for a relation between a minimum and maximum frequency. In this paper, we propose a new regularisation approach to incorporate relation cardinality constraints to any existing neural link predictor without affecting their efficiency or scalability. Our regularisation term aims to impose boundaries on the number of predictions with high probability, thus, structuring the embeddings space to respect commonsense cardinality assumptions resulting in better representations. Experimental results on Freebase, WordNet and YAGO show that, given suitable prior knowledge, the proposed method positively impacts the predictive accuracy of downstream link prediction tasks.Comment: 8 pages, accepted at the 34th ACM/SIGAPP Symposium on Applied Computing (SAC '19

    Embedding cardinality constraints in neural link predictors

    Get PDF
    Neural link predictors learn distributed representations of entities and relations in a knowledge graph. They are remarkably powerful in the link prediction and knowledge base completion tasks, mainly due to the learned representations that capture important statistical dependencies in the data. Recent works in the area have focused on either designing new scoring functions or incorporating extra information into the learning process to improve the representations. Yet the representations are mostly learned from the observed links between entities, ignoring commonsense or schema knowledge associated with the relations in the graph. A fundamental aspect of the topology of relational data is the cardinality information, which bounds the number of predictions given for a relation between a minimum and maximum frequency. In this paper, we propose a new regularisation approach to incorporate relation cardinality constraints to any existing neural link predictor without affecting their efficiency or scalability. Our regularisation term aims to impose boundaries on the number of predictions with high probability, thus, structuring the embeddings space to respect commonsense cardinality assumptions resulting in better representations. Experimental results on Freebase, WordNet and YAGO show that, given suitable prior knowledge, the proposed method positively impacts the predictive accuracy of downstream link prediction tasks
    corecore