44,208 research outputs found

    Constraint Logic Programming for Natural Language Processing

    Full text link
    This paper proposes an evaluation of the adequacy of the constraint logic programming paradigm for natural language processing. Theoretical aspects of this question have been discussed in several works. We adopt here a pragmatic point of view and our argumentation relies on concrete solutions. Using actual contraints (in the CLP sense) is neither easy nor direct. However, CLP can improve parsing techniques in several aspects such as concision, control, efficiency or direct representation of linguistic formalism. This discussion is illustrated by several examples and the presentation of an HPSG parser.Comment: 15 pages, uuencoded and compressed postscript to appear in Proceedings of the 5th Int. Workshop on Natural Language Understanding and Logic Programming. Lisbon, Portugal. 199

    Thinking Tracks for Integrated Systems Design

    Get PDF
    The paper investigates systems thinking and systems engineering. After a short literature review, the paper presents, as a means for systems thinking, twelve thinking tracks. The tracks can be used as creativity starter, checklist, and as means to investigate effects of design decisions taken early in the process. Tracks include thinking about time, risk and safety, and different types of life-cycles. The thinking tracks are based on literature, teaching experience and practice as a system designer. By using the tracks a more complete picture of the system under design, the issue to be solved, the context, stakeholders and the rest of the world is created

    Building Efficient Query Engines in a High-Level Language

    Get PDF
    Abstraction without regret refers to the vision of using high-level programming languages for systems development without experiencing a negative impact on performance. A database system designed according to this vision offers both increased productivity and high performance, instead of sacrificing the former for the latter as is the case with existing, monolithic implementations that are hard to maintain and extend. In this article, we realize this vision in the domain of analytical query processing. We present LegoBase, a query engine written in the high-level language Scala. The key technique to regain efficiency is to apply generative programming: LegoBase performs source-to-source compilation and optimizes the entire query engine by converting the high-level Scala code to specialized, low-level C code. We show how generative programming allows to easily implement a wide spectrum of optimizations, such as introducing data partitioning or switching from a row to a column data layout, which are difficult to achieve with existing low-level query compilers that handle only queries. We demonstrate that sufficiently powerful abstractions are essential for dealing with the complexity of the optimization effort, shielding developers from compiler internals and decoupling individual optimizations from each other. We evaluate our approach with the TPC-H benchmark and show that: (a) With all optimizations enabled, LegoBase significantly outperforms a commercial database and an existing query compiler. (b) Programmers need to provide just a few hundred lines of high-level code for implementing the optimizations, instead of complicated low-level code that is required by existing query compilation approaches. (c) The compilation overhead is low compared to the overall execution time, thus making our approach usable in practice for compiling query engines
    • …
    corecore