15,073 research outputs found

    Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable Code

    Full text link
    This paper introduces Tiramisu, a polyhedral framework designed to generate high performance code for multiple platforms including multicores, GPUs, and distributed machines. Tiramisu introduces a scheduling language with novel extensions to explicitly manage the complexities that arise when targeting these systems. The framework is designed for the areas of image processing, stencils, linear algebra and deep learning. Tiramisu has two main features: it relies on a flexible representation based on the polyhedral model and it has a rich scheduling language allowing fine-grained control of optimizations. Tiramisu uses a four-level intermediate representation that allows full separation between the algorithms, loop transformations, data layouts, and communication. This separation simplifies targeting multiple hardware architectures with the same algorithm. We evaluate Tiramisu by writing a set of image processing, deep learning, and linear algebra benchmarks and compare them with state-of-the-art compilers and hand-tuned libraries. We show that Tiramisu matches or outperforms existing compilers and libraries on different hardware architectures, including multicore CPUs, GPUs, and distributed machines.Comment: arXiv admin note: substantial text overlap with arXiv:1803.0041

    Static Scheduling for Barrier MIMD Architectures

    Get PDF
    Barrier MIMDs are asynchronous Multiple Instruction stream Multiple Data stream architectures capable of parallel execution of variable-execution-time instructions and arbitrary control flow (e.g., w h ile loops and calls); however, they differ from conventional MIMDs in that the need for run-time synchronization is significantly reduced. Whenever a group of processors within a barrier MIMD encounters a synchronization point (barrier), static timing constraints become precise, hence, conceptual synchronizations between the processors often can be statically resolved with zero cost — as in a SIMD or VLIW and using similar compiler technology. Unlike these machines, however, as execution continues past the synchronization point the accuracy within which the compiler can track the relative timing between processors is reduced. Where this imprecision becomes too large, the compiler simply inserts a synchronization barrier to insure that timing imprecision at that point is zero, and again employs static, implicit synchronization. This paper describes new scheduling and barrier placement algorithms for barrier MIMDs that are based loosely on the list scheduling approach employed for VLIWs [Elli85]. In addition, the experimental results from scheduling more than 3500 synthetic benchmark programs for a parameterized barrier MIMD machine are presented
    corecore