2,806 research outputs found

    Adaptation Algorithm and Theory Based on Generalized Discrepancy

    Full text link
    We present a new algorithm for domain adaptation improving upon a discrepancy minimization algorithm previously shown to outperform a number of algorithms for this task. Unlike many previous algorithms for domain adaptation, our algorithm does not consist of a fixed reweighting of the losses over the training sample. We show that our algorithm benefits from a solid theoretical foundation and more favorable learning bounds than discrepancy minimization. We present a detailed description of our algorithm and give several efficient solutions for solving its optimization problem. We also report the results of several experiments showing that it outperforms discrepancy minimization

    Finding Favourite Tuples on Data Streams with Provably Few Comparisons

    Full text link
    One of the most fundamental tasks in data science is to assist a user with unknown preferences in finding high-utility tuples within a large database. To accurately elicit the unknown user preferences, a widely-adopted way is by asking the user to compare pairs of tuples. In this paper, we study the problem of identifying one or more high-utility tuples by adaptively receiving user input on a minimum number of pairwise comparisons. We devise a single-pass streaming algorithm, which processes each tuple in the stream at most once, while ensuring that the memory size and the number of requested comparisons are in the worst case logarithmic in nn, where nn is the number of all tuples. An important variant of the problem, which can help to reduce human error in comparisons, is to allow users to declare ties when confronted with pairs of tuples of nearly equal utility. We show that the theoretical guarantees of our method can be maintained for this important problem variant. In addition, we show how to enhance existing pruning techniques in the literature by leveraging powerful tools from mathematical programming. Finally, we systematically evaluate all proposed algorithms over both synthetic and real-life datasets, examine their scalability, and demonstrate their superior performance over existing methods.Comment: To appear in KDD 202

    Stochastic expansions using continuous dictionaries: L\'{e}vy adaptive regression kernels

    Get PDF
    This article describes a new class of prior distributions for nonparametric function estimation. The unknown function is modeled as a limit of weighted sums of kernels or generator functions indexed by continuous parameters that control local and global features such as their translation, dilation, modulation and shape. L\'{e}vy random fields and their stochastic integrals are employed to induce prior distributions for the unknown functions or, equivalently, for the number of kernels and for the parameters governing their features. Scaling, shape, and other features of the generating functions are location-specific to allow quite different function properties in different parts of the space, as with wavelet bases and other methods employing overcomplete dictionaries. We provide conditions under which the stochastic expansions converge in specified Besov or Sobolev norms. Under a Gaussian error model, this may be viewed as a sparse regression problem, with regularization induced via the L\'{e}vy random field prior distribution. Posterior inference for the unknown functions is based on a reversible jump Markov chain Monte Carlo algorithm. We compare the L\'{e}vy Adaptive Regression Kernel (LARK) method to wavelet-based methods using some of the standard test functions, and illustrate its flexibility and adaptability in nonstationary applications.Comment: Published in at http://dx.doi.org/10.1214/11-AOS889 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Probabilistic Clustering Using Maximal Matrix Norm Couplings

    Full text link
    In this paper, we present a local information theoretic approach to explicitly learn probabilistic clustering of a discrete random variable. Our formulation yields a convex maximization problem for which it is NP-hard to find the global optimum. In order to algorithmically solve this optimization problem, we propose two relaxations that are solved via gradient ascent and alternating maximization. Experiments on the MSR Sentence Completion Challenge, MovieLens 100K, and Reuters21578 datasets demonstrate that our approach is competitive with existing techniques and worthy of further investigation.Comment: Presented at 56th Annual Allerton Conference on Communication, Control, and Computing, 201
    • …
    corecore