8,290 research outputs found

    A comprehensive literature classification of simulation optimisation methods

    Get PDF
    Simulation Optimization (SO) provides a structured approach to the system design and configuration when analytical expressions for input/output relationships are unavailable. Several excellent surveys have been written on this topic. Each survey concentrates on only few classification criteria. This paper presents a literature survey with all classification criteria on techniques for SO according to the problem of characteristics such as shape of the response surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). The survey focuses specifically on the SO problem that involves single per-formance measureSimulation Optimization, classification methods, literature survey

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis

    Partnering Strategies for Fitness Evaluation in a Pyramidal Evolutionary Algorithm

    Full text link
    This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes for (sub-)fitness evaluation purposes are examined for two multiple-choice optimisation problems. It is shown that random partnering strategies perform best by providing better sampling and more diversity

    A multi-agent optimisation model for solving supply network configuration problems

    Get PDF
    Supply chain literature highlights the increasing importance of effective supply network configuration decisions that take into account such realities as market turbulence and demand volatility, as well as ever-expanding global production networks. These realities have been extensively discussed in the supply network literature under the structural (i.e., physical characteristics), spatial (i.e., geographical positions), and temporal (i.e., changing supply network conditions) dimensions. Supply network configuration decisions that account for these contingencies are expected to meet the evolving needs of consumers while delivering better outcomes for all parties involved and enhancing supply network performance against the key metrics of efficiency, speed and responsiveness. However, making supply network configuration decisions in the situations described above is an ongoing challenge. Taking a systems perspective, supply networks are typically viewed as socio-technical systems where SN entities (e.g., suppliers, manufacturers) are autonomous individuals with distinct goals, practices and policies, physically inter-connected transferring goods (e.g., raw materials, finished products), as well as socially connected with formal and informal interactions and information sharing. Since the structure and behaviour of such social and technical sub-systems of a supply network, as well as the interactions between those subsystems, determine the overall behaviour of the supply network, both systems should be considered in analysing the overall system

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Emergency medical supplies scheduling during public health emergencies: algorithm design based on AI techniques

    Get PDF
    Based on AI technology, this study proposes a novel large-scale emergency medical supplies scheduling (EMSS) algorithm to address the issues of low turnover efficiency of medical supplies and unbalanced supply and demand point scheduling in public health emergencies. We construct a fairness index using an improved Gini coefficient by considering the demand for emergency medical supplies (EMS), actual distribution, and the degree of emergency at disaster sites. We developed a bi-objective optimisation model with a minimum Gini index and scheduling time. We employ a heterogeneous ant colony algorithm to solve the Pareto boundary based on reinforcement learning. A reinforcement learning mechanism is introduced to update and exchange pheromones among populations, with reward factors set to adjust pheromones and improve algorithm convergence speed. The effectiveness of the algorithm for a large EMSS problem is verified by comparing its comprehensive performance against a super-large capacity evaluation index. Results demonstrate the algorithm's effectiveness in reducing convergence time and facilitating escape from local optima in EMSS problems. The algorithm addresses the issue of demand differences at each disaster point affecting fair distribution. This study optimises early-stage EMSS schemes for public health events to minimise losses and casualties while mitigating emotional distress among disaster victims
    corecore