16,902 research outputs found

    Automatic Anomaly Detection in the Cloud Via Statistical Learning

    Full text link
    Performance and high availability have become increasingly important drivers, amongst other drivers, for user retention in the context of web services such as social networks, and web search. Exogenic and/or endogenic factors often give rise to anomalies, making it very challenging to maintain high availability, while also delivering high performance. Given that service-oriented architectures (SOA) typically have a large number of services, with each service having a large set of metrics, automatic detection of anomalies is non-trivial. Although there exists a large body of prior research in anomaly detection, existing techniques are not applicable in the context of social network data, owing to the inherent seasonal and trend components in the time series data. To this end, we developed two novel statistical techniques for automatically detecting anomalies in cloud infrastructure data. Specifically, the techniques employ statistical learning to detect anomalies in both application, and system metrics. Seasonal decomposition is employed to filter the trend and seasonal components of the time series, followed by the use of robust statistical metrics -- median and median absolute deviation (MAD) -- to accurately detect anomalies, even in the presence of seasonal spikes. We demonstrate the efficacy of the proposed techniques from three different perspectives, viz., capacity planning, user behavior, and supervised learning. In particular, we used production data for evaluation, and we report Precision, Recall, and F-measure in each case.Comment: 13 pages, 12 figure

    Sequence-based Detection of Sleeping Cell Failures in Mobile Networks

    Full text link
    This article presents an automatic malfunction detection framework based on data mining approach to analysis of network event sequences. The considered environment is Long Term Evolution (LTE) for Universal Mobile Telecommunication System (UMTS) with sleeping cell caused by random access channel failure. Sleeping cell problem means unavailability of network service without triggered alarm. The proposed detection framework uses N-gram analysis for identification of abnormal behavior in sequences of network events. These events are collected with Minimization of Drive Tests (MDT) functionality standardized in LTE. Further processing applies dimensionality reduction, anomaly detection with k-nearest neighbor, cross-validation, post-processing techniques and efficiency evaluation. Different anomaly detection approaches proposed in this paper are compared against each other with both classic data mining metrics, such as F-score and receiver operating characteristic curves, and a newly proposed heuristic approach. Achieved results demonstrate that the suggested method can be used in modern performance monitoring systems for reliable, timely and automatic detection of random access channel sleeping cells.Comment: 26 page

    Dynamic Network Cartography

    Full text link
    Communication networks have evolved from specialized, research and tactical transmission systems to large-scale and highly complex interconnections of intelligent devices, increasingly becoming more commercial, consumer-oriented, and heterogeneous. Propelled by emergent social networking services and high-definition streaming platforms, network traffic has grown explosively thanks to the advances in processing speed and storage capacity of state-of-the-art communication technologies. As "netizens" demand a seamless networking experience that entails not only higher speeds, but also resilience and robustness to failures and malicious cyber-attacks, ample opportunities for signal processing (SP) research arise. The vision is for ubiquitous smart network devices to enable data-driven statistical learning algorithms for distributed, robust, and online network operation and management, adaptable to the dynamically-evolving network landscape with minimal need for human intervention. The present paper aims at delineating the analytical background and the relevance of SP tools to dynamic network monitoring, introducing the SP readership to the concept of dynamic network cartography -- a framework to construct maps of the dynamic network state in an efficient and scalable manner tailored to large-scale heterogeneous networks.Comment: To appear in the IEEE Signal Processing Magazine - Special Issue on Adaptation and Learning over Complex Network

    A Meta-Analysis of the Anomaly Detection Problem

    Full text link
    This article provides a thorough meta-analysis of the anomaly detection problem. To accomplish this we first identify approaches to benchmarking anomaly detection algorithms across the literature and produce a large corpus of anomaly detection benchmarks that vary in their construction across several dimensions we deem important to real-world applications: (a) point difficulty, (b) relative frequency of anomalies, (c) clusteredness of anomalies, and (d) relevance of features. We apply a representative set of anomaly detection algorithms to this corpus, yielding a very large collection of experimental results. We analyze these results to understand many phenomena observed in previous work. First we observe the effects of experimental design on experimental results. Second, results are evaluated with two metrics, ROC Area Under the Curve and Average Precision. We employ statistical hypothesis testing to demonstrate the value (or lack thereof) of our benchmarks. We then offer several approaches to summarizing our experimental results, drawing several conclusions about the impact of our methodology as well as the strengths and weaknesses of some algorithms. Last, we compare results against a trivial solution as an alternate means of normalizing the reported performance of algorithms. The intended contributions of this article are many; in addition to providing a large publicly-available corpus of anomaly detection benchmarks, we provide an ontology for describing anomaly detection contexts, a methodology for controlling various aspects of benchmark creation, guidelines for future experimental design and a discussion of the many potential pitfalls of trying to measure success in this field

    ASAP: Prioritizing Attention via Time Series Smoothing

    Full text link
    Time series visualization of streaming telemetry (i.e., charting of key metrics such as server load over time) is increasingly prevalent in modern data platforms and applications. However, many existing systems simply plot the raw data streams as they arrive, often obscuring large-scale trends due to small-scale noise. We propose an alternative: to better prioritize end users' attention, smooth time series visualizations as much as possible to remove noise, while retaining large-scale structure to highlight significant deviations. We develop a new analytics operator called ASAP that automatically smooths streaming time series by adaptively optimizing the trade-off between noise reduction (i.e., variance) and trend retention (i.e., kurtosis). We introduce metrics to quantitatively assess the quality of smoothed plots and provide an efficient search strategy for optimizing these metrics that combines techniques from stream processing, user interface design, and signal processing via autocorrelation-based pruning, pixel-aware preaggregation, and on-demand refresh. We demonstrate that ASAP can improve users' accuracy in identifying long-term deviations in time series by up to 38.4% while reducing response times by up to 44.3%. Moreover, ASAP delivers these results several orders of magnitude faster than alternative search strategies

    Real-Time Anomaly Detection for Streaming Analytics

    Full text link
    Much of the worlds data is streaming, time-series data, where anomalies give significant information in critical situations. Yet detecting anomalies in streaming data is a difficult task, requiring detectors to process data in real-time, and learn while simultaneously making predictions. We present a novel anomaly detection technique based on an on-line sequence memory algorithm called Hierarchical Temporal Memory (HTM). We show results from a live application that detects anomalies in financial metrics in real-time. We also test the algorithm on NAB, a published benchmark for real-time anomaly detection, where our algorithm achieves best-in-class results

    An ISP Level Solution to Combat DDoS Attacks using Combined Statistical Based Approach

    Full text link
    Disruption from service caused by DDoS attacks is an immense threat to Internet today. These attacks can disrupt the availability of Internet services completely, by eating either computational or communication resources through sheer volume of packets sent from distributed locations in a coordinated manner or graceful degradation of network performance by sending attack traffic at low rate. In this paper, we describe a novel framework that deals with the detection of variety of DDoS attacks by monitoring propagation of abrupt traffic changes inside ISP Domain and then characterizes flows that carry attack traffic. Two statistical metrics namely, Volume and Flow are used as parameters to detect DDoS attacks. Effectiveness of an anomaly based detection and characterization system highly depends on accuracy of threshold value settings. Inaccurate threshold values cause a large number of false positives and negatives. Therefore, in our scheme, Six-Sigma and varying tolerance factor methods are used to identify threshold values accurately and dynamically for various statistical metrics. NS-2 network simulator on Linux platform is used as simulation testbed to validate effectiveness of proposed approach. Different attack scenarios are implemented by varying total number of zombie machines and at different attack strengths. The comparison with volume-based approach clearly indicates the supremacy of our proposed system

    A Survey on the Security of Pervasive Online Social Networks (POSNs)

    Full text link
    Pervasive Online Social Networks (POSNs) are the extensions of Online Social Networks (OSNs) which facilitate connectivity irrespective of the domain and properties of users. POSNs have been accumulated with the convergence of a plethora of social networking platforms with a motivation of bridging their gap. Over the last decade, OSNs have visually perceived an altogether tremendous amount of advancement in terms of the number of users as well as technology enablers. A single OSN is the property of an organization, which ascertains smooth functioning of its accommodations for providing a quality experience to their users. However, with POSNs, multiple OSNs have coalesced through communities, circles, or only properties, which make service-provisioning tedious and arduous to sustain. Especially, challenges become rigorous when the focus is on the security perspective of cross-platform OSNs, which are an integral part of POSNs. Thus, it is of utmost paramountcy to highlight such a requirement and understand the current situation while discussing the available state-of-the-art. With the modernization of OSNs and convergence towards POSNs, it is compulsory to understand the impact and reach of current solutions for enhancing the security of users as well as associated services. This survey understands this requisite and fixates on different sets of studies presented over the last few years and surveys them for their applicability to POSNs...Comment: 39 Pages, 10 Figure

    System-Level Predictive Maintenance: Review of Research Literature and Gap Analysis

    Full text link
    This paper reviews current literature in the field of predictive maintenance from the system point of view. We differentiate the existing capabilities of condition estimation and failure risk forecasting as currently applied to simple components, from the capabilities needed to solve the same tasks for complex assets. System-level analysis faces more complex latent degradation states, it has to comprehensively account for active maintenance programs at each component level and consider coupling between different maintenance actions, while reflecting increased monetary and safety costs for system failures. As a result, methods that are effective for forecasting risk and informing maintenance decisions regarding individual components do not readily scale to provide reliable sub-system or system level insights. A novel holistic modeling approach is needed to incorporate available structural and physical knowledge and naturally handle the complexities of actively fielded and maintained assets.Comment: 24 pages, 3 figure

    The Smart Black Box: A Value-Driven High-Bandwidth Automotive Event Data Recorder

    Full text link
    Autonomous vehicles require reliable and resilient sensor suites and ongoing validation through fleet-wide data collection. This paper proposes a Smart Black Box (SBB) to augment traditional low-bandwidth data logging with value-driven high-bandwidth data capture. The SBB caches short-term histories of data as buffers through a deterministic Mealy machine based on data value and similarity. Compression quality for each frame is determined by optimizing the trade-off between value and storage cost. With finite storage, prioritized data recording discards low-value buffers to make room for new data. This paper formulates SBB compression decision making as a constrained multi-objective optimization problem with novel value metrics and filtering. The SBB has been evaluated on a traffic simulator which generates trajectories containing events of interest (EOIs) and corresponding first-person view videos. SBB compression efficiency is assessed by comparing storage requirements with different compression quality levels and event capture ratios. Performance is evaluated by comparing results with a traditional first-in-first-out (FIFO) recording scheme. Deep learning performance on images recorded at different compression levels is evaluated to illustrate the reproducibility of SBB recorded data.Comment: Submitted to IEEE Transactions on Intelligent Transportation System
    • …
    corecore