2 research outputs found

    Giraffe: Using Deep Reinforcement Learning to Play Chess

    Full text link
    This report presents Giraffe, a chess engine that uses self-play to discover all its domain-specific knowledge, with minimal hand-crafted knowledge given by the programmer. Unlike previous attempts using machine learning only to perform parameter-tuning on hand-crafted evaluation functions, Giraffe's learning system also performs automatic feature extraction and pattern recognition. The trained evaluation function performs comparably to the evaluation functions of state-of-the-art chess engines - all of which containing thousands of lines of carefully hand-crafted pattern recognizers, tuned over many years by both computer chess experts and human chess masters. Giraffe is the most successful attempt thus far at using end-to-end machine learning to play chess.Comment: MSc Dissertatio

    Dynamic Move Chains -- a Forward Pruning Approach to Tree Search in Computer Chess

    Full text link
    This paper proposes a new mechanism for pruning a search game-tree in computer chess. The algorithm stores and then reuses chains or sequences of moves, built up from previous searches. These move sequences have a built-in forward-pruning mechanism that can radically reduce the search space. A typical search process might retrieve a move from a Transposition Table, where the decision of what move to retrieve would be based on the position itself. This algorithm stores move sequences based on what previous sequences were better, or caused cutoffs. This is therefore position independent and so it could also be useful in games with imperfect information or uncertainty, where the whole situation is not known at any one time. Over a small set of tests, the algorithm was shown to clearly out-perform Transposition Tables, both in terms of search reduction and game-play results.Comment: Publishe
    corecore