1,294 research outputs found

    Antenna Combining for the MIMO Downlink Channel

    Full text link
    A multiple antenna downlink channel where limited channel feedback is available to the transmitter is considered. In a vector downlink channel (single antenna at each receiver), the transmit antenna array can be used to transmit separate data streams to multiple receivers only if the transmitter has very accurate channel knowledge, i.e., if there is high-rate channel feedback from each receiver. In this work it is shown that channel feedback requirements can be significantly reduced if each receiver has a small number of antennas and appropriately combines its antenna outputs. A combining method that minimizes channel quantization error at each receiver, and thereby minimizes multi-user interference, is proposed and analyzed. This technique is shown to outperform traditional techniques such as maximum-ratio combining because minimization of interference power is more critical than maximization of signal power in the multiple antenna downlink. Analysis is provided to quantify the feedback savings, and the technique is seen to work well with user selection and is also robust to receiver estimation error.Comment: Submitted to IEEE Trans. Wireless Communications April 2007. Revised August 200

    Performance of Orthogonal Beamforming for SDMA with Limited Feedback

    Full text link
    On the multi-antenna broadcast channel, the spatial degrees of freedom support simultaneous transmission to multiple users. The optimal multiuser transmission, known as dirty paper coding, is not directly realizable. Moreover, close-to-optimal solutions such as Tomlinson-Harashima precoding are sensitive to CSI inaccuracy. This paper considers a more practical design called per user unitary and rate control (PU2RC), which has been proposed for emerging cellular standards. PU2RC supports multiuser simultaneous transmission, enables limited feedback, and is capable of exploiting multiuser diversity. Its key feature is an orthogonal beamforming (or precoding) constraint, where each user selects a beamformer (or precoder) from a codebook of multiple orthonormal bases. In this paper, the asymptotic throughput scaling laws for PU2RC with a large user pool are derived for different regimes of the signal-to-noise ratio (SNR). In the multiuser-interference-limited regime, the throughput of PU2RC is shown to scale logarithmically with the number of users. In the normal SNR and noise-limited regimes, the throughput is found to scale double logarithmically with the number of users and also linearly with the number of antennas at the base station. In addition, numerical results show that PU2RC achieves higher throughput and is more robust against CSI quantization errors than the popular alternative of zero-forcing beamforming if the number of users is sufficiently large.Comment: 27 pages; to appear in IEEE Transactions on Vehicular Technolog

    Multiuser Millimeter Wave Beamforming Strategies with Quantized and Statistical CSIT

    Full text link
    To alleviate the high cost of hardware in mmWave systems, hybrid analog/digital precoding is typically employed. In the conventional two-stage feedback scheme, the analog beamformer is determined by beam search and feedback to maximize the desired signal power of each user. The digital precoder is designed based on quantization and feedback of effective channel to mitigate multiuser interference. Alternatively, we propose a one-stage feedback scheme which effectively reduces the complexity of the signalling and feedback procedure. Specifically, the second-order channel statistics are leveraged to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. Under a fixed total feedback constraint, we investigate the conditions under which the one-stage feedback scheme outperforms the conventional two-stage counterpart. Moreover, a rate splitting (RS) transmission strategy is introduced to further tackle the multiuser interference and enhance the rate performance. Consider (1) RS precoded by the one-stage feedback scheme and (2) conventional transmission strategy precoded by the two-stage scheme with the same first-stage feedback as (1) and also certain amount of extra second-stage feedback. We show that (1) can achieve a sum rate comparable to that of (2). Hence, RS enables remarkable saving in the second-stage training and feedback overhead.Comment: submitted to TW

    Space Division Multiple Access with a Sum Feedback Rate Constraint

    Full text link
    On a multi-antenna broadcast channel, simultaneous transmission to multiple users by joint beamforming and scheduling is capable of achieving high throughput, which grows double logarithmically with the number of users. The sum rate for channel state information (CSI) feedback, however, increases linearly with the number of users, reducing the effective uplink capacity. To address this problem, a novel space division multiple access (SDMA) design is proposed, where the sum feedback rate is upper-bounded by a constant. This design consists of algorithms for CSI quantization, threshold based CSI feedback, and joint beamforming and scheduling. The key feature of the proposed approach is the use of feedback thresholds to select feedback users with large channel gains and small CSI quantization errors such that the sum feedback rate constraint is satisfied. Despite this constraint, the proposed SDMA design is shown to achieve a sum capacity growth rate close to the optimal one. Moreover, the feedback overflow probability for this design is found to decrease exponentially with the difference between the allowable and the average sum feedback rates. Numerical results show that the proposed SDMA design is capable of attaining higher sum capacities than existing ones, even though the sum feedback rate is bounded.Comment: 29 pages; submitted to IEEE Transactions on Signal Processin

    Cooperative Precoding with Limited Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the resultant performance gains can be significantly compromised in practice if the precoder design fails to account for the inaccuracy in the channel state information (CSI) feedback. This paper addresses this issue by considering finite-rate CSI feedback from receivers to their interfering transmitters in the two-user multiple-input-multiple-output (MIMO) interference channel, called cooperative feedback, and proposing a systematic method for designing transceivers comprising linear precoders and equalizers. Specifically, each precoder/equalizer is decomposed into inner and outer components for nulling the cross-link interference and achieving array gain, respectively. The inner precoders/equalizers are further optimized to suppress the residual interference resulting from finite-rate cooperative feedback. Further- more, the residual interference is regulated by additional scalar cooperative feedback signals that are designed to control transmission power using different criteria including fixed interference margin and maximum sum throughput. Finally, the required number of cooperative precoder feedback bits is derived for limiting the throughput loss due to precoder quantization.Comment: 23 pages; 5 figures; this work was presented in part at Asilomar 2011 and will appear in IEEE Trans. on Wireless Com
    corecore