20 research outputs found

    Clustering comparison of point processes with applications to random geometric models

    Full text link
    In this chapter we review some examples, methods, and recent results involving comparison of clustering properties of point processes. Our approach is founded on some basic observations allowing us to consider void probabilities and moment measures as two complementary tools for capturing clustering phenomena in point processes. As might be expected, smaller values of these characteristics indicate less clustering. Also, various global and local functionals of random geometric models driven by point processes admit more or less explicit bounds involving void probabilities and moment measures, thus aiding the study of impact of clustering of the underlying point process. When stronger tools are needed, directional convex ordering of point processes happens to be an appropriate choice, as well as the notion of (positive or negative) association, when comparison to the Poisson point process is considered. We explain the relations between these tools and provide examples of point processes admitting them. Furthermore, we sketch some recent results obtained using the aforementioned comparison tools, regarding percolation and coverage properties of the Boolean model, the SINR model, subgraph counts in random geometric graphs, and more generally, U-statistics of point processes. We also mention some results on Betti numbers for \v{C}ech and Vietoris-Rips random complexes generated by stationary point processes. A general observation is that many of the results derived previously for the Poisson point process generalise to some "sub-Poisson" processes, defined as those clustering less than the Poisson process in the sense of void probabilities and moment measures, negative association or dcx-ordering.Comment: 44 pages, 4 figure

    Shearer's point process, the hard-sphere model and a continuum Lov\'asz Local Lemma

    Get PDF
    A point process is R-dependent, if it behaves independently beyond the minimum distance R. This work investigates uniform positive lower bounds on the avoidance functions of R-dependent simple point processes with a common intensity. Intensities with such bounds are described by the existence of Shearer's point process, the unique R-dependent and R-hard-core point process with a given intensity. This work also presents several extensions of the Lov\'asz Local Lemma, a sufficient condition on the intensity and R to guarantee the existence of Shearer's point process and exponential lower bounds. Shearer's point process shares combinatorial structure with the hard-sphere model with radius R, the unique R-hard-core Markov point process. Bounds from the Lov\'asz Local Lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach \`a la Dobrushin

    On comparison of clustering properties of point processes

    Full text link
    In this paper, we propose a new comparison tool for spatial homogeneity of point processes, based on the joint examination of void probabilities and factorial moment measures. We prove that determinantal and permanental processes, as well as, more generally, negatively and positively associated point processes are comparable in this sense to the Poisson point process of the same mean measure. We provide some motivating results and preview further ones, showing that the new tool is relevant in the study of macroscopic, percolative properties of point processes. This new comparison is also implied by the directionally convex (dcxdcx ordering of point processes, which has already been shown to be relevant to comparison of spatial homogeneity of point processes. For this latter ordering, using a notion of lattice perturbation, we provide a large monotone spectrum of comparable point processes, ranging from periodic grids to Cox processes, and encompassing Poisson point process as well. They are intended to serve as a platform for further theoretical and numerical studies of clustering, as well as simple models of random point patterns to be used in applications where neither complete regularity northe total independence property are not realistic assumptions.Comment: 23 pages, 1 figure. This submission revisits and adds to ideas concerning clustering and dcxdcx ordering presented in arXiv:1105.4293. Results on associated point process in Section 3.3 are new. arXiv admin note: substantial text overlap with arXiv:1105.429

    Shearer's point process, the hard-sphere model, and a continuum Lovász local lemma

    Get PDF
    A point process is R-dependent if it behaves independently beyond the minimum distance R. In this paper we investigate uniform positive lower bounds on the avoidance functions of R-dependent simple point processes with a common intensity. Intensities with such bounds are characterised by the existence of Shearer’s point process, the unique R-dependent and R-hard-core point process with a given intensity. We also present several extensions of the Lovász local lemma, a sufficient condition on the intensity andR to guarantee the existence of Shearer’s point process and exponential lower bounds. Shearer’s point process shares a combinatorial structure with the hard-sphere model with radius R, the unique R-hard-core Markov point process. Bounds from the Lovász local lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle (1969) on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach of Dobrushin (1996)

    Clustering, percolation and directionally convex ordering of point processes

    Full text link
    Heuristics indicate that point processes exhibiting clustering of points have larger critical radius rcr_c for the percolation of their continuum percolation models than spatially homogeneous point processes. It has already been shown, and we reaffirm it in this paper, that the dcxdcx ordering of point processes is suitable to compare their clustering tendencies. Hence, it was tempting to conjecture that rcr_c is increasing in dcxdcx order. Some numerical evidences support this conjecture for a special class of point processes, called perturbed lattices, which are "toy models" for determinantal and permanental point processes. However, the conjecture is not true in full generality, since one can construct a Cox point process with degenerate critical radius rc=0r_c=0, that is dcxdcx larger than a given homogeneous Poisson point process. Nevertheless, we are able to compare some nonstandard critical radii related, respectively, to the finiteness of the expected number of void circuits around the origin and asymptotic of the expected number of long occupied paths from the origin in suitable discrete approximations of the continuum model. These new critical radii sandwich the "true" one. Surprisingly, the inequalities for them go in opposite directions, which gives uniform lower and upper bounds on rcr_c for all processes dcxdcx smaller than some given process. In fact, the above results hold under weaker assumptions on the ordering of void probabilities or factorial moment measures only. Examples of point processes comparable to Poisson processes in this weaker sense include determinantal and permanental processes. More generally, we show that point processes dcxdcx smaller than homogeneous Poisson processes exhibit phase transitions in certain percolation models based on the level-sets of additive shot-noise fields, as e.g. kk-percolation and SINR-percolation.Comment: 48 pages, 6 figure

    Clustering and percolation of point processes

    Full text link
    We are interested in phase transitions in certain percolation models on point processes and their dependence on clustering properties of the point processes. We show that point processes with smaller void probabilities and factorial moment measures than the stationary Poisson point process exhibit non-trivial phase transition in the percolation of some coverage models based on level-sets of additive functionals of the point process. Examples of such point processes are determinantal point processes, some perturbed lattices, and more generally, negatively associated point processes. Examples of such coverage models are kk-coverage in the Boolean model (coverage by at least kk grains) and SINR-coverage (coverage if the signal-to-interference-and-noise ratio is large). In particular, we answer in affirmative the hypothesis of existence of phase transition in the percolation of kk-faces in the \v{C}ech simplicial complex (called also clique percolation) on point processes which cluster less than the Poisson process. We also construct a Cox point process, which is "more clustered" than the Poisson point process and whose Boolean model percolates for arbitrarily small radius. This shows that clustering (at least, as detected by our specific tools) does not always "worsen" percolation, as well as that upper-bounding this clustering by a Poisson process is a consequential assumption for the phase transition to hold.Comment: 25 pages, 1 figure. This paper complements arXiv:1111.6017. arXiv admin note: substantial text overlap with arXiv:1105.429

    Multiconfigurational Hartree-Fock theory for identical bosons in a double well

    Full text link
    Multiconfigurational Hartree-Fock theory is presented and implemented in an investigation of the fragmentation of a Bose-Einstein condensate made of identical bosonic atoms in a double well potential at zero temperature. The approach builds in the effects of the condensate mean field and of atomic correlations by describing generalized many-body states that are composed of multiple configurations which incorporate atomic interactions. Nonlinear and linear optimization is utilized in conjunction with the variational and Hylleraas-Undheim theorems to find the optimal ground and excited states of the interacting system. The resulting energy spectrum and associated eigenstates are presented as a function of double well barrier height. Delocalized and localized single configurational states are found in the extreme limits of the simple and fragmented condensate ground states, while multiconfigurational states and macroscopic quantum superposition states are revealed throughout the full extent of barrier heights. Comparison is made to existing theories that either neglect mean field or correlation effects and it is found that contributions from both interactions are essential in order to obtain a robust microscopic understanding of the condensate's atomic structure throughout the fragmentation process.Comment: 21 pages, 13 figure
    corecore