16,280 research outputs found

    Querying Probabilistic Neighborhoods in Spatial Data Sets Efficiently

    Full text link
    \newcommand{\dist}{\operatorname{dist}} In this paper we define the notion of a probabilistic neighborhood in spatial data: Let a set PP of nn points in Rd\mathbb{R}^d, a query point qRdq \in \mathbb{R}^d, a distance metric \dist, and a monotonically decreasing function f:R+[0,1]f : \mathbb{R}^+ \rightarrow [0,1] be given. Then a point pPp \in P belongs to the probabilistic neighborhood N(q,f)N(q, f) of qq with respect to ff with probability f(\dist(p,q)). We envision applications in facility location, sensor networks, and other scenarios where a connection between two entities becomes less likely with increasing distance. A straightforward query algorithm would determine a probabilistic neighborhood in Θ(nd)\Theta(n\cdot d) time by probing each point in PP. To answer the query in sublinear time for the planar case, we augment a quadtree suitably and design a corresponding query algorithm. Our theoretical analysis shows that -- for certain distributions of planar PP -- our algorithm answers a query in O((N(q,f)+n)logn)O((|N(q,f)| + \sqrt{n})\log n) time with high probability (whp). This matches up to a logarithmic factor the cost induced by quadtree-based algorithms for deterministic queries and is asymptotically faster than the straightforward approach whenever N(q,f)o(n/logn)|N(q,f)| \in o(n / \log n). As practical proofs of concept we use two applications, one in the Euclidean and one in the hyperbolic plane. In particular, our results yield the first generator for random hyperbolic graphs with arbitrary temperatures in subquadratic time. Moreover, our experimental data show the usefulness of our algorithm even if the point distribution is unknown or not uniform: The running time savings over the pairwise probing approach constitute at least one order of magnitude already for a modest number of points and queries.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-44543-4_3

    Cooperative Synchronization in Wireless Networks

    Full text link
    Synchronization is a key functionality in wireless network, enabling a wide variety of services. We consider a Bayesian inference framework whereby network nodes can achieve phase and skew synchronization in a fully distributed way. In particular, under the assumption of Gaussian measurement noise, we derive two message passing methods (belief propagation and mean field), analyze their convergence behavior, and perform a qualitative and quantitative comparison with a number of competing algorithms. We also show that both methods can be applied in networks with and without master nodes. Our performance results are complemented by, and compared with, the relevant Bayesian Cram\'er-Rao bounds

    More is less: Connectivity in fractal regions

    Get PDF
    Ad-hoc networks are often deployed in regions with complicated boundaries. We show that if the boundary is modeled as a fractal, a network requiring line of sight connections has the counterintuitive property that increasing the number of nodes decreases the full connection probability. We characterise this decay as a stretched exponential involving the fractal dimension of the boundary, and discuss mitigation strategies. Applications of this study include the analysis and design of sensor networks operating in rugged terrain (e.g. railway cuttings), mm-wave networks in industrial settings and vehicle-to-vehicle/vehicle-to-infrastructure networks in urban environments.Comment: 5 page

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work
    corecore