2 research outputs found

    More is Better? Measurement of MPTCP based Cellular Bandwidth Aggregation in the Wild

    Get PDF
    4G/3G networks have been widely deployed around the world to provide high wireless bandwidth for mobile users. However, the achievable 3G/4G bandwidth is still much lower than their theoretic maximum. Signal strengths and available backhaul capacities may vary significantly at different locations and times, often leading to unsatisfactory performance. Bandwidth aggregation, which uses multiple interfaces concurrently for data transfer, is a readily deployable solution. Specifically, Multi-Path TCP (MPTCP) has been advocated as a promising approach for leveraging multiple source-destination paths simultaneously in the transport layer. In this paper, we investigate the efficiency of an MPTCP-based bandwidth aggregation framework based on extensive measurements. In particular, we evaluate the gain for bandwidth aggregation across up to 4 cellular operators’ networks, with respect to factors such as time, user location, data size, aggregation proxy location and congestion control algorithm. Our measurement studies reveal that (1) bandwidth aggregation in general improves the cellular network bandwidth experienced by mobile users, but the performance gain is significant only for bandwidth-intensive delay-tolerant flows; (2) the effectiveness of aggregation depends on many network factors, including QoS of individual cellular interfaces and the location of aggregation proxy; (3) contextual factors, including the time of day and the mobility of a user, also affect the aggregation performance.postprin

    Comparison of Multipath TCP and CMT-SCTP based on intercontinental measurements

    No full text
    corecore