1,785 research outputs found

    Mapping applications onto FPGA-centric clusters

    Full text link
    High Performance Computing (HPC) is becoming increasingly important throughout science and engineering as ever more complex problems must be solved through computational simulations. In these large computational applications, the latency of communication between processing nodes is often the key factor that limits performance. An emerging alternative computer architecture that addresses the latency problem is the FPGA-centric cluster (FCC); in these systems, the devices (FPGAs) are directly interconnected and thus many layers of hardware and software are avoided. The result can be scalability not currently achievable with other technologies. In FCCs, FPGAs serve multiple functions: accelerator, network interface card (NIC), and router. Moreover, because FPGAs are configurable, there is substantial opportunity to tailor the router hardware to the application; previous work has demonstrated that such application-aware configuration can effect a substantial improvement in hardware efficiency. One constraint of FCCs is that it is convenient for their interconnect to be static, direct, and have a two or three dimensional mesh topology. Thus, applications that are naturally of a different dimensionality (have a different logical topology) from that of the FCC must be remapped to obtain optimal performance. In this thesis we study various aspects of the mapping problem for FCCs. There are two major research thrusts. The first is finding the optimal mapping of logical to physical topology. This problem has received substantial attention by both the theory community, where topology mapping is referred to as graph embedding, and by the High Performance Computing (HPC) community, where it is a question of process placement. We explore the implications of the different mapping strategies on communication behavior in FCCs, especially on resulting load imbalance. The second major research thrust is built around the hypothesis that applications that need to be remapped (due to differing logical and physical topologies) will have different optimal router configurations from those applications that do not. For example, due to remapping, some virtual or physical communication links may have little occupancy; therefore fewer resources should be allocated to them. Critical here is the creation of a new set of parameterized hardware features that can be configured to best handle load imbalances caused by remapping. These two thrusts form a codesign loop: certain mapping algorithms may be differentially optimal due to application-aware router reconfiguration that accounts for this mapping. This thesis has four parts. The first part introduces the background and previous work related to communication in general and, in particular, how it is implemented in FCCs. We build on previous work on application-aware router configuration. The second part introduces topology mapping mechanisms including those derived from graph embeddings and a greedy algorithm commonly used in HPC. In the third part, topology mappings are evaluated for performance and imbalance; we note that different mapping strategies lead to different imbalances both in the overall network and in each node. The final part introduces reconfigure router design that allocates resources based on different imbalance situations caused by different mapping behaviors

    HyperFPGA: SoC-FPGA Cluster Architecture for Supercomputing and Scientific applications

    Get PDF
    Since their inception, supercomputers have addressed problems that far exceed those of a single computing device. Modern supercomputers are made up of tens of thousands of CPUs and GPUs in racks that are interconnected via elaborate and most of the time ad hoc networks. These large facilities provide scientists with unprecedented and ever-growing computing power capable of tackling more complex and larger problems. In recent years, the most powerful supercomputers have already reached megawatt power consumption levels, an important issue that challenges sustainability and shows the impossibility of maintaining this trend. With more pressure on energy efficiency, an alternative to traditional architectures is needed. Reconfigurable hardware, such as FPGAs, has repeatedly been shown to offer substantial advantages over the traditional supercomputing approach with respect to performance and power consumption. In fact, several works that advanced the field of heterogeneous supercomputing using FPGAs are described in this thesis \cite{survey-2002}. Each cluster and its architectural characteristics can be studied from three interconnected domains: network, hardware, and software tools, resulting in intertwined challenges that designers must take into account. The classification and study of the architectures illustrate the trade-offs of the solutions and help identify open problems and research lines, which in turn served as inspiration and background for the HyperFPGA. In this thesis, the HyperFPGA cluster is presented as a way to build scalable SoC-FPGA platforms to explore new architectures for improved performance and energy efficiency in high-performance computing, focusing on flexibility and openness. The HyperFPGA is a modular platform based on a SoM that includes power monitoring tools with high-speed general-purpose interconnects to offer a great level of flexibility and introspection. By exploiting the reconfigurability and programmability offered by the HyperFPGA infrastructure, which combines FPGAs and CPUs, with high-speed general-purpose connectors, novel computing paradigms can be implemented. A custom Linux OS and drivers, along with a custom script for hardware definition, provide a uniform interface from application to platform for a programmable framework that integrates existing tools. The development environment is demonstrated using the N-Queens problem, which is a classic benchmark for evaluating the performance of parallel computing systems. Overall, the results of the HyperFPGA using the N-Queens problem highlight the platform's ability to handle computationally intensive tasks and demonstrate its suitability for its use in supercomputing experiments.Since their inception, supercomputers have addressed problems that far exceed those of a single computing device. Modern supercomputers are made up of tens of thousands of CPUs and GPUs in racks that are interconnected via elaborate and most of the time ad hoc networks. These large facilities provide scientists with unprecedented and ever-growing computing power capable of tackling more complex and larger problems. In recent years, the most powerful supercomputers have already reached megawatt power consumption levels, an important issue that challenges sustainability and shows the impossibility of maintaining this trend. With more pressure on energy efficiency, an alternative to traditional architectures is needed. Reconfigurable hardware, such as FPGAs, has repeatedly been shown to offer substantial advantages over the traditional supercomputing approach with respect to performance and power consumption. In fact, several works that advanced the field of heterogeneous supercomputing using FPGAs are described in this thesis \cite{survey-2002}. Each cluster and its architectural characteristics can be studied from three interconnected domains: network, hardware, and software tools, resulting in intertwined challenges that designers must take into account. The classification and study of the architectures illustrate the trade-offs of the solutions and help identify open problems and research lines, which in turn served as inspiration and background for the HyperFPGA. In this thesis, the HyperFPGA cluster is presented as a way to build scalable SoC-FPGA platforms to explore new architectures for improved performance and energy efficiency in high-performance computing, focusing on flexibility and openness. The HyperFPGA is a modular platform based on a SoM that includes power monitoring tools with high-speed general-purpose interconnects to offer a great level of flexibility and introspection. By exploiting the reconfigurability and programmability offered by the HyperFPGA infrastructure, which combines FPGAs and CPUs, with high-speed general-purpose connectors, novel computing paradigms can be implemented. A custom Linux OS and drivers, along with a custom script for hardware definition, provide a uniform interface from application to platform for a programmable framework that integrates existing tools. The development environment is demonstrated using the N-Queens problem, which is a classic benchmark for evaluating the performance of parallel computing systems. Overall, the results of the HyperFPGA using the N-Queens problem highlight the platform's ability to handle computationally intensive tasks and demonstrate its suitability for its use in supercomputing experiments

    High performance communication on reconfigurable clusters

    Get PDF
    High Performance Computing (HPC) has matured to where it is an essential third pillar, along with theory and experiment, in most domains of science and engineering. Communication latency is a key factor that is limiting the performance of HPC, but can be addressed by integrating communication into accelerators. This integration allows accelerators to communicate with each other without CPU interactions, and even bypassing the network stack. Field Programmable Gate Arrays (FPGAs) are the accelerators that currently best integrate communication with computation. The large number of Multi-gigabit Transceivers (MGTs) on most high-end FPGAs can provide high-bandwidth and low-latency inter-FPGA connections. Additionally, the reconfigurable FPGA fabric enables tight coupling between computation kernel and network interface. Our thesis is that an application-aware communication infrastructure for a multi-FPGA system makes substantial progress in solving the HPC communication bottleneck. This dissertation aims to provide an application-aware solution for communication infrastructure for FPGA-centric clusters. Specifically, our solution demonstrates application-awareness across multiple levels in the network stack, including low-level link protocols, router microarchitectures, routing algorithms, and applications. We start by investigating the low-level link protocol and the impact of its latency variance on performance. Our results demonstrate that, although some link jitter is always present, we can still assume near-synchronous communication on an FPGA-cluster. This provides the necessary condition for statically-scheduled routing. We then propose two novel router microarchitectures for two different kinds of workloads: a wormhole Virtual Channel (VC)-based router for workloads with dynamic communication, and a statically-scheduled Virtual Output Queueing (VOQ)-based router for workloads with static communication. For the first (VC-based) router, we propose a framework that generates application-aware router configurations. Our results show that, by adding application-awareness into router configuration, the network performance of FPGA clusters can be substantially improved. For the second (VOQ-based) router, we propose a novel offline collective routing algorithm. This shows a significant advantage over a state-of-the-art collective routing algorithm. We apply our communication infrastructure to a critical strong-scaling HPC kernel, the 3D FFT. The experimental results demonstrate that the performance of our design is faster than that on CPUs and GPUs by at least one order of magnitude (achieving strong scaling for the target applications). Surprisingly, the FPGA cluster performance is similar to that of an ASIC-cluster. We also implement the 3D FFT on another multi-FPGA platform: the Microsoft Catapult II cloud. Its performance is also comparable or superior to CPU and GPU HPC clusters. The second application we investigate is Molecular Dynamics Simulation (MD). We model MD on both FPGA clouds and clusters. We find that combining processing and general communication in the same device leads to extremely promising performance and the prospect of MD simulations well into the us/day range with a commodity cloud

    Cooperative high-performance computing with FPGAs - matrix multiply case-study

    Get PDF
    In high-performance computing, there is great opportunity for systems that use FPGAs to handle communication while also performing computation on data in transit in an ``altruistic'' manner--that is, using resources for computation that might otherwise be used for communication, and in a way that improves overall system performance and efficiency. We provide a specific definition of \textbf{Computing in the Network} that captures this opportunity. We then outline some overall requirements and guidelines for cooperative computing that include this ability, and make suggestions for specific computing capabilities to be added to the networking hardware in a system. We then explore some algorithms running on a network so equipped for a few specific computing tasks: dense matrix multiplication, sparse matrix transposition and sparse matrix multiplication. In the first instance we give limits of problem size and estimates of performance that should be attainable with present-day FPGA hardware

    A Survey on FPGA-Based Heterogeneous Clusters Architectures

    Get PDF
    In recent years, the most powerful supercomputers have already reached megawatt power consumption levels, an important issue that challenges sustainability and shows the impossibility of maintaining this trend. To this date, the prevalent approach to supercomputing is dominated by CPUs and GPUs. Given their fixed architectures with generic instruction sets, they have been favored with lots of tools and mature workflows which led to mass adoption and further growth. However, reconfigurable hardware such as FPGAs has repeatedly proven that it offers substantial advantages over this supercomputing approach concerning performance and power consumption. In this survey, we review the most relevant works that advanced the field of heterogeneous supercomputing using FPGAs focusing on their architectural characteristics. Each work was divided into three main parts: network, hardware, and software tools. All implementations face challenges that involve all three parts. These dependencies result in compromises that designers must take into account. The advantages and limitations of each approach are discussed and compared in detail. The classification and study of the architectures illustrate the trade-offs of the solutions and help identify open problems and research lines

    Efficient Intra-Rack Resource Disaggregation for HPC Using Co-Packaged DWDM Photonics

    Full text link
    The diversity of workload requirements and increasing hardware heterogeneity in emerging high performance computing (HPC) systems motivate resource disaggregation. Resource disaggregation allows compute and memory resources to be allocated individually as required to each workload. However, it is unclear how to efficiently realize this capability and cost-effectively meet the stringent bandwidth and latency requirements of HPC applications. To that end, we describe how modern photonics can be co-designed with modern HPC racks to implement flexible intra-rack resource disaggregation and fully meet the bit error rate (BER) and high escape bandwidth of all chip types in modern HPC racks. Our photonic-based disaggregated rack provides an average application speedup of 11% (46% maximum) for 25 CPU and 61% for 24 GPU benchmarks compared to a similar system that instead uses modern electronic switches for disaggregation. Using observed resource usage from a production system, we estimate that an iso-performance intra-rack disaggregated HPC system using photonics would require 4x fewer memory modules and 2x fewer NICs than a non-disaggregated baseline.Comment: 15 pages, 12 figures, 4 tables. Published in IEEE Cluster 202

    Modeling high-performance wormhole NoCs for critical real-time embedded systems

    Get PDF
    Manycore chips are a promising computing platform to cope with the increasing performance needs of critical real-time embedded systems (CRTES). However, manycores adoption by CRTES industry requires understanding task's timing behavior when their requests use manycore's network-on-chip (NoC) to access hardware shared resources. This paper analyzes the contention in wormhole-based NoC (wNoC) designs - widely implemented in the high-performance domain - for which we introduce a new metric: worst-contention delay (WCD) that captures wNoC impact on worst-case execution time (WCET) in a tighter manner than the existing metric, worst-case traversal time (WCTT). Moreover, we provide an analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors. Building on top of our WCD analytical model, we analyze the impact on WCD that different design parameters such as the number of virtual channels, and we make a set of recommendations on what wNoC setups to use in the context of CRTES.Peer ReviewedPostprint (author's final draft
    corecore