485 research outputs found

    Ongoing EEG artifact correction using blind source separation

    Full text link
    Objective: Analysis of the electroencephalogram (EEG) for epileptic spike and seizure detection or brain-computer interfaces can be severely hampered by the presence of artifacts. The aim of this study is to describe and evaluate a fast automatic algorithm for ongoing correction of artifacts in continuous EEG recordings, which can be applied offline and online. Methods: The automatic algorithm for ongoing correction of artifacts is based on fast blind source separation. It uses a sliding window technique with overlapping epochs and features in the spatial, temporal and frequency domain to detect and correct ocular, cardiac, muscle and powerline artifacts. Results: The approach was validated in an independent evaluation study on publicly available continuous EEG data with 2035 marked artifacts. Validation confirmed that 88% of the artifacts could be removed successfully (ocular: 81%, cardiac: 84%, muscle: 98%, powerline: 100%). It outperformed state-of-the-art algorithms both in terms of artifact reduction rates and computation time. Conclusions: Fast ongoing artifact correction successfully removed a good proportion of artifacts, while preserving most of the EEG signals. Significance: The presented algorithm may be useful for ongoing correction of artifacts, e.g., in online systems for epileptic spike and seizure detection or brain-computer interfaces.Comment: 16 pages, 4 figures, 3 table

    Design of a Simulator for Neonatal Multichannel EEG: Application to Time-Frequency Approaches for Automatic Artifact Removal and Seizure Detection

    Get PDF
    The electroencephalogram (EEG) is used to noninvasively monitor brain activities; it is the most utilized tool to detect abnormalities such as seizures. In recent studies, detection of neonatal EEG seizures has been automated to assist neurophysiologists in diagnosing EEG as manual detection is time consuming and subjective; however it still lacks the necessary robustness that is required for clinical implementation. Moreover, as EEG is intended to record the cerebral activities, extra-cerebral activities external to the brain are also recorded; these are called “artifacts” and can seriously degrade the accuracy of seizure detection. Seizures are one of the most common neurologic problems managed by hospitals occurring in 0.1%-0.5% livebirths. Neonates with seizures are at higher risk for mortality and are reported to be 55-70 times more likely to have severe cerebral-palsy. Therefore, early and accurate detection of neonatal seizures is important to prevent long-term neurological damage. Several attempts in modelling the neonatal EEG and artifacts have been done, but most did not consider the multichannel case. Furthermore, these models were used to test artifact or seizure detection separately, but not together. This study aims to design synthetic models that generate clean or corrupted multichannel EEG to test the accuracy of available artifact and seizure detection algorithms in a controlled environment. In this thesis, synthetic neonatal EEG model is constructed by using; single-channel EEG simulators, head model, 21-electrodes, and propagation equations, to produce clean multichannel EEG. Furthermore, neonatal EEG artifact model is designed using synthetic signals to corrupt EEG waveforms. After that, an automated EEG artifact detection and removal system is designed in both time and time-frequency domains. Artifact detection is optimised and removal performance is evaluated. Finally, an automated seizure detection technique is developed, utilising fused and extended multichannel features along a cross-validated SVM classifier. Results show that the synthetic EEG model mimics real neonatal EEG with 0.62 average correlation, and corrupted-EEG can degrade seizure detection average accuracy from 100% to 70.9%. They also show that using artifact detection and removal enhances the average accuracy to 89.6%, and utilising the extended features enhances it to 97.4% and strengthened its robustness.لمراقبة ورصد أنشطة واشارات المخ، دون الحاجة لأي عملیات (EEG) یستخدم الرسم أو التخطیط الكھربائي للدماغ للدماغجراحیة، وھي تعد الأداة الأكثر استخداما في الكشف عن أي شذوذأو نوبات غیر طبیعیة مثل نوبات الصرع. وقد أظھرت دراسات حدیثة، أن الكشف الآلي لنوبات حدیثي الولادة، ساعد علماء الفسیولوجیا العصبیة في تشخیص الاشارات الدماغیة بشكل أكبر من الكشف الیدوي، حیث أن الكشف الیدوي یحتاج إلى وقت وجھد أكبر وھوذو فعالیة أقل بكثیر، إلا أنھ لا یزال یفتقر إلى المتانة الضروریة والمطلوبة للتطبیق السریري.علاوة على ذلك؛ فكما یقوم الرسم الكھربائي بتسجیل الأنشطة والإشارات الدماغیة الداخلیة، فھو یسجل أیضا أي نشاط أو اشارات خارجیة، مما یؤدي إلى -(artifacts) :حدوث خلل في مدى دقة وفعالیة الكشف عن النوبات الدماغیة الداخلیة، ویطلق على تلك الاشارات مسمى (نتاج صنعي) . 0.5٪ولادة حدیثة في -٪تعد نوبات الصرع من أكثر المشكلات العصبیة انتشارا،ً وھي تصیب ما یقارب 0.1المستشفیات. حیث أن حدیثي الولادة المصابین بنوبات الصرع ھم أكثر عرضة للوفاة، وكما تشیر التقاریر الى أنھم 70مرة أكثر. لذا یعد الكشف المبكر والدقیق للنوبات الدماغیة -معرضین للإصابة بالشلل الدماغي الشدید بما یقارب 55لحدیثي الولادة مھم جدا لمنع الضرر العصبي على المدى الطویل. لقد تم القیام بالعدید من المحاولات التي كانتتھدف الى تصمیم نموذج التخطیط الكھربائي والنتاج الصنعي لدماغ حدیثي الولادة, إلا أن معظمھا لم یعر أي اھتمام الى قضیة تعدد القنوات. إضافة الى ذلك, استخدمت ھذه النماذج , كل على حدة, أو نوبات الصرع. تھدف ھذه الدراسة الى تصمیم نماذج مصطنعة من شأنھا (artifact) لإختبار كاشفات النتاج الصنعيأن تولد اشارات دماغیة متعددة القنوات سلیمة أو معطلة وذلك لفحص مدى دقة فعالیة خوارزمیات الكشف عن نوبات ضمن بیئة یمكن السیطرة علیھا. (artifact) الصرع و النتاج الصنعي في ھذه الأطروحة, یتكون نموذج الرسم الكھربائي المصطنع لحدیثي الولادة من : قناة محاكاة واحده للرسم الكھربائي, نموذج رأس, 21قطب كھربائي و معادلات إنتشار. حیث تھدف جمیعھا لإنتاج إشاراة سلیمة متعدده القنوات للتخطیط عن طریق استخدام اشارات مصطنعة (artifact) الكھربائي للدماغ.علاوة على ذلك, لقد تم تصمیم نموذجالنتاج الصنعيفي نطاقالوقت و (artifact) لإتلاف الرسم الكھربائي للدماغ. بعد ذلك تم انشاء برنامج لكشف و إزالةالنتاج الصناعينطاقالوقت و التردد المشترك. تم تحسین برنامج الكشف النتاج الصناعيالى ابعد ما یمكن بینما تمت عملیة تقییم أداء الإزالة. وفي الختام تم التمكن من تطویر تقنیة الكشف الآلي عن نوبات الصرع, وذلك بتوظیف صفات مدمجة و صفات الذي تم التأكد من صحتھ. (SVM) جدیدة للقنوات المتعددة لإستخدامھا للمصنفلقد أظھرت النتائج أن نموذج الرسم الكھربائي المصطنع لحدیثي الولادة یحاكي الرسمالكھربائي الحقیقي لحدیثي الولادة بمتوسط ترابط 0.62, و أنالرسم الكھربائي المتضرر للدماغ قد یؤدي الى حدوث ھبوطفي مدى دقة متوسط الكشف عن نوبات الصرع من 100%الى 70.9%. وقد أشارت أیضا الى أن استخدام الكشف والإزالة عن النتاج الصنعي (artifact) یؤدي الى تحسن مستوى الدقة الى نسبة 89.6 %, وأن توظیف الصفات الجدیدة للقنوات المتعددة یزید من تحسنھا لتصل الى نسبة 94.4 % مما یعمل على دعم متانتھا

    Coherency and sharpness measures by using ICA algorithms. An investigation for Alzheimer’s disease discrimination

    Get PDF
    In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algorithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can help in the artifact rejection and noise reduction, improving the discriminative property of features in high frequency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum number of selected components is investigated, in order to help decision processes for future works

    The Distressed Brain: A Group Blind Source Separation Analysis on Tinnitus

    Get PDF
    Background: Tinnitus, the perception of a sound without an external sound source, can lead to variable amounts of distress. Methodology: In a group of tinnitus patients with variable amounts of tinnitus related distress, as measured by the Tinnitus Questionnaire (TQ), an electroencephalography (EEG) is performed, evaluating the patients ’ resting state electrical brain activity. This resting state electrical activity is compared with a control group and between patients with low (N = 30) and high distress (N = 25). The groups are homogeneous for tinnitus type, tinnitus duration or tinnitus laterality. A group blind source separation (BSS) analysis is performed using a large normative sample (N = 84), generating seven normative components to which high and low tinnitus patients are compared. A correlation analysis of the obtained normative components ’ relative power and distress is performed. Furthermore, the functional connectivity as reflected by lagged phase synchronization is analyzed between the brain areas defined by the components. Finally, a group BSS analysis on the Tinnitus group as a whole is performed. Conclusions: Tinnitus can be characterized by at least four BSS components, two of which are posterior cingulate based, one based on the subgenual anterior cingulate and one based on the parahippocampus. Only the subgenual component correlates with distress. When performed on a normative sample, group BSS reveals that distress is characterized by two anterior cingulate based components. Spectral analysis of these components demonstrates that distress in tinnitus is relate

    Pinpointing a highly specific pathological functional connection that turns phantom sound into distress

    No full text
    International audienceIt has been suggested that an auditory phantom percept is the result of multiple, parallel but overlapping networks. One of those networks encodes tinnitus loudness and is electrophysiologically separable from a non-specific distress network. The present study investigates how these networks anatomically overlap, what networks are involved and how and when these networks interact. The EEG data of 317 tinnitus patients and 256 healthy subjects were analyzed, using independent component analysis. Results demonstrate that tinnitus is characterized by at least two major brain networks, each consisting of multiple independent components. One network reflects tinnitus distress, while another network reflects the loudness of the tinnitus. The component coherence analysis shows that the independent components that make up the distress and loudness networks communicate within their respective network at several discrete frequencies in parallel. The distress and loudness networks do not intercommunicate for patients without distress, but do when patients are distressed by their tinnitus. The obtained data demonstrate that the components that build up these two separable networks communicate at discrete frequencies within the network, and only between the distress and loudness networks in those patients in whom the symptoms are also clinically linked

    EEG filtering based on blind source separation (BSS) for early detection of Alzheimer's disease

    Get PDF
    Objective: Development of an EEG preprocessing technique for improvement of detection of Alzheimer’s disease (AD). The technique is based on filtering of EEG data using blind source separation (BSS) and projection of components which are possibly sensitive to cortical neuronal impairment found in early stages of AD. Method: Artifact-free 20 s intervals of raw resting EEG recordings from 22 patients with Mild Cognitive Impairment (MCI) who later proceeded to AD and 38 age-matched normal controls were decomposed into spatio-temporally decorrelated components using BSS algorithm ‘AMUSE’. Filtered EEG was obtained by back projection of components with the highest linear predictability. Relative power of filtered data in delta, theta, alpha1, alpha2, beta1, and beta 2 bands were processed with Linear Discriminant Analysis (LDA). Results: Preprocessing improved the percentage of correctly classified patients and controls computed with jack-knifing cross-validation from 59 to 73% and from 76 to 84%, correspondingly. Conclusions: The proposed approach can significantly improve the sensitivity and specificity of EEG based diagnosis. Significance: Filtering based on BSS can improve the performance of the existing EEG approaches to early diagnosis of Alzheimer’s disease. It may also have potential for improvement of EEG classification in other clinical areas or fundamental research. The developed method is quite general and flexible, allowing for various extensions and improvements. q 2004 Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophysiology

    Robust artifactual independent component classification for BCI practitioners

    Get PDF
    Objective. EEG artifacts of non-neural origin can be separated from neural signals by independent component analysis (ICA). It is unclear (1) how robustly recently proposed artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2) how artifact cleaning by a machine learning classifier impacts the performance of brain–computer interfaces (BCIs). Approach. Addressing (1), the robustness of different strategies with respect to the transfer between paradigms and electrode setups of a recently proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing (2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials from 101 users and 3 paradigms. Main results. We show that (1) the proposed artifact classifier generalizes to completely different EEG paradigms. To obtain similar results under massively reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing (2), ICA artifact cleaning has little influence on average BCI performance when analyzed by state-of-the-art BCI methods. When slow motor-related features are exploited, performance varies strongly between individuals, as artifacts may obstruct relevant neural activity or are inadvertently used for BCI control. Significance. Robustness of the proposed strategies can be reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.EC/FP7/224631/EU/Tools for Brain-Computer Interaction/TOBIBMBF, 01GQ0850, Verbundprojekt: Bernstein Fokus Neurotechnologie - Nichtinvasive Neurotechnologie für Mensch-Maschine Interaktion - Teilprojekte A1, A3, A4, B4, W3, ZentrumDFG, 194657344, EXC 1086: BrainLinks-BrainTool

    Dual Adaptive Filtering by Optimal Projection Applied to Filter Muscle Artifacts on EEG and Comparative Study

    Get PDF
    Muscle artifacts constitute one of the major problems in electroencephalogram (EEG) examinations, particularly for the diagnosis of epilepsy, where pathological rhythms occur within the same frequency bands as those of artifacts. This paper proposes to use the method dual adaptive filtering by optimal projection (DAFOP) to automatically remove artifacts while preserving true cerebral signals. DAFOP is a two-step method. The first step consists in applying the common spatial pattern (CSP) method to two frequency windows to identify the slowest components which will be considered as cerebral sources. The two frequency windows are defined by optimizing convolutional filters. The second step consists in using a regression method to reconstruct the signal independently within various frequency windows. This method was evaluated by two neurologists on a selection of 114 pages with muscle artifacts, from 20 clinical recordings of awake and sleeping adults, subject to pathological signals and epileptic seizures. A blind comparison was then conducted with the canonical correlation analysis (CCA) method and conventional low-pass filtering at 30 Hz. The filtering rate was 84.3% for muscle artifacts with a 6.4% reduction of cerebral signals even for the fastest waves. DAFOP was found to be significantly more efficient than CCA and 30 Hz filters. The DAFOP method is fast and automatic and can be easily used in clinical EEG recordings

    Regional coherence evaluation in mild cognitive impairment and Alzheimer's disease based on adaptively extracted magnetoencephalogram rhythms

    Get PDF
    This study assesses the connectivity alterations caused by Alzheimer's disease (AD) and mild cognitive impairment (MCI) in magnetoencephalogram (MEG) background activity. Moreover, a novel methodology to adaptively extract brain rhythms from the MEG is introduced. This methodology relies on the ability of empirical mode decomposition to isolate local signal oscillations and constrained blind source separation to extract the activity that jointly represents a subset of channels. Inter-regional MEG connectivity was analysed for 36 AD, 18 MCI and 26 control subjects in δ, θ, α and β bands over left and right central, anterior, lateral and posterior regions with magnitude squared coherence—c(f). For the sake of comparison, c(f) was calculated from the original MEG channels and from the adaptively extracted rhythms. The results indicated that AD and MCI cause slight alterations in the MEG connectivity. Computed from the extracted rhythms, c(f) distinguished AD and MCI subjects from controls with 69.4% and 77.3% accuracies, respectively, in a full leave-one-out cross-validation evaluation. These values were higher than those obtained without the proposed extraction methodology
    corecore