12,711 research outputs found

    A sub-mW IoT-endnode for always-on visual monitoring and smart triggering

    Full text link
    This work presents a fully-programmable Internet of Things (IoT) visual sensing node that targets sub-mW power consumption in always-on monitoring scenarios. The system features a spatial-contrast 128x64128\mathrm{x}64 binary pixel imager with focal-plane processing. The sensor, when working at its lowest power mode (10ÎĽW10\mu W at 10 fps), provides as output the number of changed pixels. Based on this information, a dedicated camera interface, implemented on a low-power FPGA, wakes up an ultra-low-power parallel processing unit to extract context-aware visual information. We evaluate the smart sensor on three always-on visual triggering application scenarios. Triggering accuracy comparable to RGB image sensors is achieved at nominal lighting conditions, while consuming an average power between 193ÎĽW193\mu W and 277ÎĽW277\mu W, depending on context activity. The digital sub-system is extremely flexible, thanks to a fully-programmable digital signal processing engine, but still achieves 19x lower power consumption compared to MCU-based cameras with significantly lower on-board computing capabilities.Comment: 11 pages, 9 figures, submitteted to IEEE IoT Journa

    Associative memory of phase-coded spatiotemporal patterns in leaky Integrate and Fire networks

    Get PDF
    We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at differentctime scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stablecprecise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units

    Star formation bursts in isolated spiral galaxies

    Get PDF
    We study the response of the gaseous component of a galactic disc to the time dependent potential generated by N-body simulations of a spiral galaxy. The results show significant variation of the spiral structure of the gas which might be expected to result in significant fluctuations in the Star Formation Rate (SFR). Pronounced local variations of the SFR are anticipated in all cases. Bursty histories for the global SFR, however, require that the mean surface density is much less (around an order of magnitude less) than the putative threshold for star formation. We thus suggest that bursty star formation histories, normally attributed to mergers and/or tidal interactions, may be a normal pattern for gas poor isolated spiral galaxies.Comment: 7 pages, 7 figures To be published in Monthly Notices Roy. Astr. So

    Investigating the properties of AGN feedback in hot atmospheres triggered by cooling-induced gravitational collapse

    Full text link
    Radiative cooling may plausibly cause hot gas in the centre of a massive galaxy, or galaxy cluster, to become gravitationally unstable. The subsequent collapse of this gas on a dynamical timescale can provide an abundant source of fuel for AGN heating and star formation. Thus, this mechanism provides a way to link the AGN accretion rate to the global properties of an ambient cooling flow, but without the implicit assumption that the accreted material must have flowed onto the black hole from 10s of kiloparsecs away. It is shown that a fuelling mechanism of this sort naturally leads to a close balance between AGN heating and the radiative cooling rate of the hot, X-ray emitting halo. Furthermore, AGN powered by cooling-induced gravitational instability would exhibit characteristic duty cycles (delta) which are redolent of recent observational findings: delta is proportional to L_X/sigma_{*}^{3}, where L_X is the X-ray luminosity of the hot atmosphere, and sigma_{*} is the central stellar velocity dispersion of the host galaxy. Combining this result with well-known scaling relations, we deduce a duty cycle for radio AGN in elliptical galaxies that is approximately proportional to M_{BH}^{1.5}, where M_{BH} is the central black hole mass. Outburst durations and Eddington ratios are also given. Based on the results of this study, we conclude that gravitational instability could provide an important mechanism for supplying fuel to AGN in massive galaxies and clusters, and warrants further investigation.Comment: Accepted for publication in MNRAS. 8 page

    End-gas autoignition propensity and flame propagation rate measurements in laser-ignited rapid compression machine experiments

    Get PDF
    2019 Summer.Includes bibliographical references.Knock in spark-ignited (SI) engines is initiated by autoignition and detonation in the unburned gases upstream of spark-ignited, propagating, turbulent premixed flames. Knock propensity of fuel/air mixtures is typically quantified using research octane number (RON), motor octane number (MON), or methane number (MN; for gaseous fuels), which are measured using single-cylinder, variable compression ratio engines. In this study, knock propensity of SI fuels was quantified via observations of end-gas autoignition (EGAI) in unburned gases upstream of laser-ignited, premixed flames at elevated pressures and temperatures in a rapid compression machine. Stoichiometric primary reference fuel (PRF; n-heptane/isooctane) blends of varying reactivity (50 ≤ PRF ≤ 100) were ignited using an Nd:YAG laser over a range of temperatures and pressures, all in excess of 545 K and 16.1 bar. Laser-ignition produced outwardly-propagating premixed flames. High-speed pressure measurements and schlieren images indicated the presence of EGAI. The fraction of the total heat release attributed to EGAI (i.e., EGAI fraction) varied strongly with fuel reactivity (i.e., octane number) and the time-integrated temperature in the end-gas prior to ignition. Flame propagation rates, which were measured using schlieren images, did not vary strongly with octane number but were affected by turbulence caused by variation in piston timing. Under conditions of low turbulence, measured flame propagation rates agreed with the theoretical premixed laminar flame speeds quantified by 1-D calculations performed at the same conditions. Experiments were compared to a three-dimensional CONVERGE™ model with reduced chemical kinetics. Model results accurately captured the measured flame propagation rates, as well as the variation in EGAI fraction with fuel reactivity and time-integrated end-gas temperature. Model results also revealed low-temperature heat release and hydrogen peroxide formation in the end-gas upstream of the propagating laminar flame, which increased the temperature and degree of chain branching in the end-gas and ultimately led to EGAI
    • …
    corecore