3,529 research outputs found

    Supporting searching on small screen devices using summarisation

    Get PDF
    In recent years, small screen devices have seen widespread increase in their acceptance and use. Combining mobility with their increased technological advances many such devices can now be considered mobile information terminals. However, user interactions with small screen devices remain a challenge due to the inherent limited display capabilities. These challenges are particularly evident for tasks, such as information seeking. In this paper we assess the effectiveness of using hierarchical-query biased summaries as a means of supporting the results of an information search conducted on a small screen device, a PDA. We present the results of an experiment focused on measuring users' perception of relevance of displayed documents, in the form of automatically generated summaries of increasing length, in response to a simulated submitted query. The aim is to study experimentally how users' perception of relevance varies depending on the length of summary, in relation to the characteristics of the PDA interface on which the content is presented. Experimental results suggest that hierarchical query-biased summaries are useful and assist users in making relevance judgments

    Mobile information access in the real world: A story of three wireless devices

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2008 ElsevierThe importance of the user perspective to the wireless information access experience cannot be understated: simply put, users will not indulge in devices that are perceived to be difficult to use and in technologies that do not offer quality infotainment – combined information and entertainment – content. In this paper, we investigate the impact that mobile devices have on the user wireless infotainment access experience in practice. To this end, we have undertaken an empirical study placed in a ‘real-world’ setting, in which participants undertook typical infotainment access tasks on three different wireless-enabled mobile devices: a laptop, a personal digital assistant and a head mounted display device. Results show that, with the exception of participants’ level of self-consciousness when using such devices in public environments, the user wireless information access experience is generally unaffected by device type. Location was shown, though, to be a significant factor when users engage in tasks such as listening to online music or navigation. Whilst the interaction between device and environment was found to influence entertainment-related tasks in our experiments, the informational ones were not affected. However, the interaction effects between device and user type was found to affect both types of tasks. Lastly, a user’s particular computing experience was shown to influence the perceived ease of wireless information access only in the case of online searching, irrespective of whether this is done for primarily informational purposes or entertainment ones

    Ergonomic, adaptable keyboard for fast data entry on mobile computing devices

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (leaves 22-24).The usefulness of modem portable computational devices such as cellular phones and portable digital assistants (PDAs) is currently limited by the lack of an effective method for text entry. The currently available input options (such as the 12-key phone pad and PDA touch screens) are a quarter to a third of the speed of the standard desktop QWERTY keyboards. Therefore, it is slow and frustrating for people to use these systems for any significant text input, such as writing emails, taking notes in a meeting, or writing down thoughts while on-the-go. The proposed solution is a one-handed, hand-held, wireless, portable keyboard that would allow the mobile device user to achieve speeds closer to the desktop standard while performing text-entry tasks. Previously developed handheld input devices employ unfamiliar typing systems, are too large, or are not ergonomically comfortable, which may be the reasons they have not been widely adopted by the public. The device described in this paper is small enough to store in one's pocket, is inconspicuous during use, and is adjustable so that the keys reach the fingers in their natural curved position. One interface point allows each finger to control multiple buttons thereby preventing the fingers from, needing to move into uncomfortable positions.(cont.) These features were incorporated into a prototype that proves the feasibility of a compact and comfortable hand-held keyboard. The device also has potential as an ergonomic replacement to the standard desktop keyboard. Unlike traditional keyboards it allows the typist to be relaxed and mobile eliminating some risk factors for repetitive strain injury.by Alexander Mekelburg.S.B

    Designs for a general purpose wearable computer

    Get PDF
    To provide input and control, wearable computer solutions must replace the familiar desktop interface devices of keyboard and mouse with specialized hardware. While successful wearable input solutions have been developed for domain specific applications, a standard input interface for general purpose wearable computing has yet to emerge. The steep learning curves and unruly hardware of the solutions proposed thus far are one of the factors keeping wearable computing out of the mainstream. This thesis proposes a new input and control approach that increases wearable computing usability by integrating several commonly available devices into a comprehensive system. The proposed system integrates commercial, off the shelf hardware together with generalized software applications that increase the usability and general utility of a wearable computer. The hardware consists of a wearable computer, a clip-on microdisplay eyepiece and a standard PDA running Pocket PC. Through a Bluetooth network, the PDA can wirelessly control the text input (keyboard) and pointer control (mouse) of the wearable computer. The software consists of two applications designed to provide easy access to new content and previously stored data. One application presents a user with a continuous scroll of new content which can be attended to at the user\u27s discretion. The content is dynamically retrieved from any online sources, and can range from news feeds and stock quotes to calendars and weather reports. New content can be added to the user\u27s persistent digital store at any time. The second application, a private peer-to-peer data sharing program called the Tangle, was developed to fuse the user\u27s multiple data sources (home or work computer, wearable computer, PDA) into a single, searchable repository. Tangle also provides easy access to the digital assets of other, trusted Tangle users. Tangle makes it easy for virtually any content that a user encounters while using the system to be easily added to the user\u27s persistent data store

    Creative idea exploration within the structure of a guiding framework : the card brainstorming game

    Get PDF
    I present a card brainstorming exercise that transforms a conceptual tangible interaction framework into a tool for creative dialogue and discuss the experiences made in using it. Ten sessions with this card game demonstrate the frameworks' versatility and utility. Observation and participant feedback highlight the value of a provocative question format and of the metaphor of a card game

    Nomadic input on mobile devices: the influence of touch input technique and walking speed on performance and offset modeling

    Get PDF
    In everyday life people use their mobile phones on-the-go with different walking speeds and with different touch input techniques. Unfortunately, much of the published research in mobile interaction does not quantify the influence of these variables. In this paper, we analyze the influence of walking speed, gait pattern and input techniques on commonly used performance parameters like error rate, accuracy and tapping speed, and we compare the results to the static condition. We examine the influence of these factors on the machine learned offset model used to correct user input and we make design recommendations. The results show that all performance parameters degraded when the subject started to move, for all input techniques. Index finger pointing techniques demonstrated overall better performance compared to thumb-pointing techniques. The influence of gait phase on tap event likelihood and accuracy was demonstrated for all input techniques and all walking speeds. Finally, it was shown that the offset model built on static data did not perform as well as models inferred from dynamic data, which indicates the speed-specific nature of the models. Also, models identified using specific input techniques did not perform well when tested in other conditions, demonstrating the limited validity of offset models to a particular input technique. The model was therefore calibrated using data recorded with the appropriate input technique, at 75% of preferred walking speed, which is the speed to which users spontaneously slow down when they use a mobile device and which presents a tradeoff between accuracy and usability. This led to an increase in accuracy compared to models built on static data. The error rate was reduced between 0.05% and 5.3% for landscape-based methods and between 5.3% and 11.9% for portrait-based methods

    Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless Camera Networks

    Get PDF
    Local data aggregation is an effective means to save sensor node energy and prolong the lifespan of wireless sensor networks. However, when a sensor network is used to track moving objects, the task of local data aggregation in the network presents a new set of challenges, such as the necessity to estimate, usually in real time, the constantly changing state of the target based on information acquired by the nodes at different time instants. To address these issues, we propose a distributed object tracking system which employs a cluster-based Kalman filter in a network of wireless cameras. When a target is detected, cameras that can observe the same target interact with one another to form a cluster and elect a cluster head. Local measurements of the target acquired by members of the cluster are sent to the cluster head, which then estimates the target position via Kalman filtering and periodically transmits this information to a base station. The underlying clustering protocol allows the current state and uncertainty of the target position to be easily handed off among clusters as the object is being tracked. This allows Kalman filter-based object tracking to be carried out in a distributed manner. An extended Kalman filter is necessary since measurements acquired by the cameras are related to the actual position of the target by nonlinear transformations. In addition, in order to take into consideration the time uncertainty in the measurements acquired by the different cameras, it is necessary to introduce nonlinearity in the system dynamics. Our object tracking protocol requires the transmission of significantly fewer messages than a centralized tracker that naively transmits all of the local measurements to the base station. It is also more accurate than a decentralized tracker that employs linear interpolation for local data aggregation. Besides, the protocol is able to perform real-time estimation because our implementation takes into consideration the sparsit- - y of the matrices involved in the problem. The experimental results show that our distributed object tracking protocol is able to achieve tracking accuracy comparable to the centralized tracking method, while requiring a significantly smaller number of message transmissions in the network

    3D Medical Collaboration Technology to Enhance Emergency Healthcare

    Get PDF
    Two-dimensional (2D) videoconferencing has been explored widely in the past 15–20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare

    User-centred design of flexible hypermedia for a mobile guide: Reflections on the hyperaudio experience

    Get PDF
    A user-centred design approach involves end-users from the very beginning. Considering users at the early stages compels designers to think in terms of utility and usability and helps develop the system on what is actually needed. This paper discusses the case of HyperAudio, a context-sensitive adaptive and mobile guide to museums developed in the late 90s. User requirements were collected via a survey to understand visitors’ profiles and visit styles in Natural Science museums. The knowledge acquired supported the specification of system requirements, helping defining user model, data structure and adaptive behaviour of the system. User requirements guided the design decisions on what could be implemented by using simple adaptable triggers and what instead needed more sophisticated adaptive techniques, a fundamental choice when all the computation must be done on a PDA. Graphical and interactive environments for developing and testing complex adaptive systems are discussed as a further step towards an iterative design that considers the user interaction a central point. The paper discusses how such an environment allows designers and developers to experiment with different system’s behaviours and to widely test it under realistic conditions by simulation of the actual context evolving over time. The understanding gained in HyperAudio is then considered in the perspective of the developments that followed that first experience: our findings seem still valid despite the passed time
    • 

    corecore