56,026 research outputs found

    The Value of Comparative Animal Research : Krogh’s Principle Facilitates Scientific Discoveries

    Get PDF
    There are no conflicts of interest to declare. This paper developed from the 2016 Early Career Impact Award from the Federation of Associations in Behavioral & Brain Sciences to TJS. TJS has received funding from The Leverhulme Trust. FJPE is in receipt of funding from the BBSRC (BB/M001555/1). The National Institutes of Health has funded RDF (NS 034950, NS093277, NIMH 087930), AGO (HD079573, IOS-1354760) and AMK (HD081959). BAA is an Arnold O. Beckman postdoctoral fellow.Peer reviewedPostprin

    Early identification of important patents through network centrality

    Full text link
    One of the most challenging problems in technological forecasting is to identify as early as possible those technologies that have the potential to lead to radical changes in our society. In this paper, we use the US patent citation network (1926-2010) to test our ability to early identify a list of historically significant patents through citation network analysis. We show that in order to effectively uncover these patents shortly after they are issued, we need to go beyond raw citation counts and take into account both the citation network topology and temporal information. In particular, an age-normalized measure of patent centrality, called rescaled PageRank, allows us to identify the significant patents earlier than citation count and PageRank score. In addition, we find that while high-impact patents tend to rely on other high-impact patents in a similar way as scientific papers, the patents' citation dynamics is significantly slower than that of papers, which makes the early identification of significant patents more challenging than that of significant papers.Comment: 14 page

    Entrepreneurship, innovation and the triple helix model: evidence from Oxfordshire and Cambridgeshire

    Get PDF
    This paper focuses on how regions become entrepreneurial and the extent to which the actors in the triple helix model are dominant at particular stages in development. It uses the case studies of Oxfordshire and Cambridgeshire in the UK to explore this theme. Both can now be described as ‘regional triple helix spaces’ (Etzkowitz 2008), and form two points of the Golden Triangle of Oxford, Cambridge and London universities. As entrepreneurial regions, however, they differ in a number of respects. This is not surprising given their differing geo-historical contexts. However, by comparing the two similar counties but which have their own distinctive features we are able to explore different dynamics which lead to the inception, implementation, consolidation and renewal (Etzkowitz and Klofsten 2005) of regions characterised by very high levels of technology-based entrepreneurship

    Technological and theoretical aspects for testing electroporation on liposomes

    Get PDF
    Recently, the use of nanometer liposomes as nanocarriers in drug delivery systems mediated by nanoelectroporation has been proposed. This technique takes advantage of the possibility of simultaneously electroporating liposomes and cell membrane with 10-nanosecond pulsed electric fields (nsPEF) facilitating the release of the drug from the liposomes and at the same time its uptake by the cells. In this paper the design and characterization of a 10 nsPEF exposure system is presented, for liposomes electroporation purposes. The design and the characterization of the applicator have been carried out choosing an electroporation cuvette with 1 mm gap between the electrodes. The structure efficiency has been evaluated at different experimental conditions by changing the solution conductivity from 0.25 to 1.6 S/m. With the aim to analyze the influence of device performances on the liposomes electroporation, microdosimetric simulations have been performed considering liposomes of 200 and 400 nm of dimension with different inner and outer conductivity (from 0.05 to 1.6 S/m) in order to identify the voltage needed for their poration

    Is Academic Science Driving a Surge in Industrial Innovation? Evidence from Patent Citations

    Get PDF
    What is driving the remarkable increase over the last decade in the propensity of patents to cite academic science? Does this trend indicate that stronger knowledge spillovers from academia have helped power the surge in innovative activity in the U.S. in the 1990s? This paper seeks to shed light on these questions by using a common empirical framework to assess the relative importance of various alternative hypotheses in explaining the growth in patent citations to science. Our analysis supports the notion that the nature of U.S. inventive activity has changed over the sample period, with an increased emphasis on the use of the knowledge generated by university-based scientists in later years. However, the concentration of patent-to-paper citation activity within what we call the "bio nexus" suggests that much of the contribution of knowledge spillovers from academia may be largely confined to bioscience-related inventions.
    • 

    corecore