25,279 research outputs found

    DeltaTree: A Practical Locality-aware Concurrent Search Tree

    Full text link
    As other fundamental programming abstractions in energy-efficient computing, search trees are expected to support both high parallelism and data locality. However, existing highly-concurrent search trees such as red-black trees and AVL trees do not consider data locality while existing locality-aware search trees such as those based on the van Emde Boas layout (vEB-based trees), poorly support concurrent (update) operations. This paper presents DeltaTree, a practical locality-aware concurrent search tree that combines both locality-optimisation techniques from vEB-based trees and concurrency-optimisation techniques from non-blocking highly-concurrent search trees. DeltaTree is a kk-ary leaf-oriented tree of DeltaNodes in which each DeltaNode is a size-fixed tree-container with the van Emde Boas layout. The expected memory transfer costs of DeltaTree's Search, Insert, and Delete operations are O(logBN)O(\log_B N), where N,BN, B are the tree size and the unknown memory block size in the ideal cache model, respectively. DeltaTree's Search operation is wait-free, providing prioritised lanes for Search operations, the dominant operation in search trees. Its Insert and {\em Delete} operations are non-blocking to other Search, Insert, and Delete operations, but they may be occasionally blocked by maintenance operations that are sometimes triggered to keep DeltaTree in good shape. Our experimental evaluation using the latest implementation of AVL, red-black, and speculation friendly trees from the Synchrobench benchmark has shown that DeltaTree is up to 5 times faster than all of the three concurrent search trees for searching operations and up to 1.6 times faster for update operations when the update contention is not too high

    Fast Dynamic Arrays

    Get PDF
    We present a highly optimized implementation of tiered vectors, a data structure for maintaining a sequence of nn elements supporting access in time O(1)O(1) and insertion and deletion in time O(nϵ)O(n^\epsilon) for ϵ>0\epsilon > 0 while using o(n)o(n) extra space. We consider several different implementation optimizations in C++ and compare their performance to that of vector and multiset from the standard library on sequences with up to 10810^8 elements. Our fastest implementation uses much less space than multiset while providing speedups of 40×40\times for access operations compared to multiset and speedups of 10.000×10.000\times compared to vector for insertion and deletion operations while being competitive with both data structures for all other operations

    Strengthened Lazy Heaps: Surpassing the Lower Bounds for Binary Heaps

    Full text link
    Let nn denote the number of elements currently in a data structure. An in-place heap is stored in the first nn locations of an array, uses O(1)O(1) extra space, and supports the operations: minimum, insert, and extract-min. We introduce an in-place heap, for which minimum and insert take O(1)O(1) worst-case time, and extract-min takes O(lgn)O(\lg{} n) worst-case time and involves at most lgn+O(1)\lg{} n + O(1) element comparisons. The achieved bounds are optimal to within additive constant terms for the number of element comparisons. In particular, these bounds for both insert and extract-min -and the time bound for insert- surpass the corresponding lower bounds known for binary heaps, though our data structure is similar. In a binary heap, when viewed as a nearly complete binary tree, every node other than the root obeys the heap property, i.e. the element at a node is not smaller than that at its parent. To surpass the lower bound for extract-min, we reinforce a stronger property at the bottom levels of the heap that the element at any right child is not smaller than that at its left sibling. To surpass the lower bound for insert, we buffer insertions and allow O(lg2n)O(\lg^2{} n) nodes to violate heap order in relation to their parents

    POPE: Partial Order Preserving Encoding

    Get PDF
    Recently there has been much interest in performing search queries over encrypted data to enable functionality while protecting sensitive data. One particularly efficient mechanism for executing such queries is order-preserving encryption/encoding (OPE) which results in ciphertexts that preserve the relative order of the underlying plaintexts thus allowing range and comparison queries to be performed directly on ciphertexts. In this paper, we propose an alternative approach to range queries over encrypted data that is optimized to support insert-heavy workloads as are common in "big data" applications while still maintaining search functionality and achieving stronger security. Specifically, we propose a new primitive called partial order preserving encoding (POPE) that achieves ideal OPE security with frequency hiding and also leaves a sizable fraction of the data pairwise incomparable. Using only O(1) persistent and O(nϵ)O(n^\epsilon) non-persistent client storage for 0<ϵ<10<\epsilon<1, our POPE scheme provides extremely fast batch insertion consisting of a single round, and efficient search with O(1) amortized cost for up to O(n1ϵ)O(n^{1-\epsilon}) search queries. This improved security and performance makes our scheme better suited for today's insert-heavy databases.Comment: Appears in ACM CCS 2016 Proceeding

    Random Indexing K-tree

    Get PDF
    Random Indexing (RI) K-tree is the combination of two algorithms for clustering. Many large scale problems exist in document clustering. RI K-tree scales well with large inputs due to its low complexity. It also exhibits features that are useful for managing a changing collection. Furthermore, it solves previous issues with sparse document vectors when using K-tree. The algorithms and data structures are defined, explained and motivated. Specific modifications to K-tree are made for use with RI. Experiments have been executed to measure quality. The results indicate that RI K-tree improves document cluster quality over the original K-tree algorithm.Comment: 8 pages, ADCS 2009; Hyperref and cleveref LaTeX packages conflicted. Removed clevere

    Managing Unbounded-Length Keys in Comparison-Driven Data Structures with Applications to On-Line Indexing

    Full text link
    This paper presents a general technique for optimally transforming any dynamic data structure that operates on atomic and indivisible keys by constant-time comparisons, into a data structure that handles unbounded-length keys whose comparison cost is not a constant. Examples of these keys are strings, multi-dimensional points, multiple-precision numbers, multi-key data (e.g.~records), XML paths, URL addresses, etc. The technique is more general than what has been done in previous work as no particular exploitation of the underlying structure of is required. The only requirement is that the insertion of a key must identify its predecessor or its successor. Using the proposed technique, online suffix tree can be constructed in worst case time O(logn)O(\log n) per input symbol (as opposed to amortized O(logn)O(\log n) time per symbol, achieved by previously known algorithms). To our knowledge, our algorithm is the first that achieves O(logn)O(\log n) worst case time per input symbol. Searching for a pattern of length mm in the resulting suffix tree takes O(min(mlogΣ,m+logn)+tocc)O(\min(m\log |\Sigma|, m + \log n) + tocc) time, where tocctocc is the number of occurrences of the pattern. The paper also describes more applications and show how to obtain alternative methods for dealing with suffix sorting, dynamic lowest common ancestors and order maintenance
    corecore