95,972 research outputs found

    Responsible Autonomy

    Full text link
    As intelligent systems are increasingly making decisions that directly affect society, perhaps the most important upcoming research direction in AI is to rethink the ethical implications of their actions. Means are needed to integrate moral, societal and legal values with technological developments in AI, both during the design process as well as part of the deliberation algorithms employed by these systems. In this paper, we describe leading ethics theories and propose alternative ways to ensure ethical behavior by artificial systems. Given that ethics are dependent on the socio-cultural context and are often only implicit in deliberation processes, methodologies are needed to elicit the values held by designers and stakeholders, and to make these explicit leading to better understanding and trust on artificial autonomous systems.Comment: IJCAI2017 (International Joint Conference on Artificial Intelligence

    A synthesis of fuzzy rule-based system verification.

    Get PDF
    The verification of fuzzy rule bases for anomalies has received increasing attention these last few years. Many different approaches have been suggested and many are still under investigation. In this paper, we give a synthesis of methods proposed in literature that try to extend the verification of clasical rule bases to the case of fuzzy knowledge modelling, without needing a set of representative input. Within this area of fyzzy V&V we identify two dual lines of thought respectively leading to what is identified as static and dynamic anomaly detection methods. Static anomaly detection essentially tries to use similarity, affinity or matching measures to identify anomalies wihin a fuzzy rule base. It is assumed that the detection methods can be the same as those used in a non-fuzzy environment, except that the formerly mentioned measures indicate the degree of matching of two fuzzy expressions. Dynamic anomaly detection starts from the basic idea that any anomaly within a knowledge representation formalism, i.c. fuzzy if-then rules, can be identified by performing a dynamic analysis of the knowledge system, even without providing special input to the system. By imposing a constraint on the results of inference for an anomaly not to occur, one creates definitions of the anomalies that can only be verified if the inference pocess, and thereby the fuzzy inference operator is involved in the analysis. The major outcome of the confrontation between both approaches is that their results, stated in terms of necessary and/or sufficient conditions for anomaly detection within a particular situation, are difficult to reconcile. The duality between approaces seems to have translated into a duality in results. This article addresses precisely this issue by presenting a theoretical framework which anables us to effectively evaluate the results of both static and dynamic verification theories.

    Population axiology

    Get PDF
    Population axiology is the study of the conditions under which one state of affairs is better than another, when the states of affairs in ques- tion may differ over the numbers and the identities of the persons who ever live. Extant theories include totalism, averagism, variable value theories, critical level theories, and “person-affecting” theories. Each of these the- ories is open to objections that are at least prima facie serious. A series of impossibility theorems shows that this is no coincidence: it can be proved, for various sets of prima facie intuitively compelling desiderata, that no axiology can simultaneously satisfy all the desiderata on the list. One’s choice of population axiology appears to be a choice of which intuition one is least unwilling to give up

    Measuring and Implementing Equality of Opportunity for Income

    Get PDF
    Departing from the welfarist tradition, recent theories of justice focus on individual opportunities as the appropriate standard for distributive judgments. Justice is seen as requiring equality of opportunity, instead of outcomes, among the individuals. To explore how this philosophical conception can be translated into concrete public policy, we select the in-come as relevant outcome and the income tax as the relevant redistributive policy, and we address the following questions: (i) what is the degree of opportunity inequality in an income distribution? (ii) how to design an opportunity egalitarian income tax policy? Both positive and normative criteria for ranking income distributions on the basis of equality of oppor-tunities are derived. Moreover, we characterize an opportunity egalitarian income tax policy and we formulate criteria for choosing among alternative tax systems.

    How much of commonsense and legal reasoning is formalizable? A review of conceptual obstacles

    Get PDF
    Fifty years of effort in artificial intelligence (AI) and the formalization of legal reasoning have produced both successes and failures. Considerable success in organizing and displaying evidence and its interrelationships has been accompanied by failure to achieve the original ambition of AI as applied to law: fully automated legal decision-making. The obstacles to formalizing legal reasoning have proved to be the same ones that make the formalization of commonsense reasoning so difficult, and are most evident where legal reasoning has to meld with the vast web of ordinary human knowledge of the world. Underlying many of the problems is the mismatch between the discreteness of symbol manipulation and the continuous nature of imprecise natural language, of degrees of similarity and analogy, and of probabilities

    The Elliptic curves in gauge theory, string theory, and cohomology

    Full text link
    Elliptic curves play a natural and important role in elliptic cohomology. In earlier work with I. Kriz, thes elliptic curves were interpreted physically in two ways: as corresponding to the intersection of M2 and M5 in the context of (the reduction of M-theory to) type IIA and as the elliptic fiber leading to F-theory for type IIB. In this paper we elaborate on the physical setting for various generalized cohomology theories, including elliptic cohomology, and we note that the above two seemingly unrelated descriptions can be unified using Sen's picture of the orientifold limit of F-theory compactification on K3, which unifies the Seiberg-Witten curve with the F-theory curve, and through which we naturally explain the constancy of the modulus that emerges from elliptic cohomology. This also clarifies the orbifolding performed in the previous work and justifies the appearance of the w_4 condition in the elliptic refinement of the mod 2 part of the partition function. We comment on the cohomology theory needed for the case when the modular parameter varies in the base of the elliptic fibration.Comment: 23 pages, typos corrected, minor clarification
    • …
    corecore