2 research outputs found

    Comparing Atmospheric Correction Performance for Sentinel-2 and Landsat-8 data

    Get PDF
    In terms of atmospheric impact, the volcanic eruption of Mt. Pinatubo (1991) is thebest characterized large eruption on record. We investigate here the stratosphericwarming following the Pinatubo eruption derived from SAGE II extinction data includ-ing most recent improvements in the processing algorithm and a data filling procedure in the opacity-induced “gap” regions. From these data, which cover wavelengths of1.024 micrometer and shorter, we derived aerosol size distributions which properly re-produce extinction coefficients at much longer wavelength. This provides a good basisfor calculating the absorption of terrestrial infrared radiation and the resulting strato-spheric heating. However, we also show that the use of this dataset in the global chemistry-climate model (CCM) SOCOL leads to exaggerated aerosol-induced strato-spheric heating compared to observations, even partly larger than the already too highvalues found by many models in recent general circulation model (GCM) and CCMintercomparisons. This suggests that the overestimation of the stratospheric warm-ing after the Pinatubo eruption arises from deficiencies in the model radiation codes rather than an insufficient observational data basis. Conversely, our approach reducesthe infrared absorption in the tropical tropopause region, in better agreement with thepost-volcanic temperature record at these altitudes.ISSN:1680-7375ISSN:1680-736
    corecore