2 research outputs found

    On Solving Boolean Multilevel Optimization Problems

    Full text link
    Many combinatorial optimization problems entail a number of hierarchically dependent optimization problems. An often used solution is to associate a suitably large cost with each individual optimization problem, such that the solution of the resulting aggregated optimization problem solves the original set of hierarchically dependent optimization problems. This paper starts by studying the package upgradeability problem in software distributions. Straightforward solutions based on Maximum Satisfiability (MaxSAT) and pseudo-Boolean (PB) optimization are shown to be ineffective, and unlikely to scale for large problem instances. Afterwards, the package upgradeability problem is related to multilevel optimization. The paper then develops new algorithms for Boolean Multilevel Optimization (BMO) and highlights a large number of potential applications. The experimental results indicate that the proposed algorithms for BMO allow solving optimization problems that existing MaxSAT and PB solvers would otherwise be unable to solve

    Algorithms for Weighted Boolean Optimization

    Full text link
    The Pseudo-Boolean Optimization (PBO) and Maximum Satisfiability (MaxSAT) problems are natural optimization extensions of Boolean Satisfiability (SAT). In the recent past, different algorithms have been proposed for PBO and for MaxSAT, despite the existence of straightforward mappings from PBO to MaxSAT and vice-versa. This papers proposes Weighted Boolean Optimization (WBO), a new unified framework that aggregates and extends PBO and MaxSAT. In addition, the paper proposes a new unsatisfiability-based algorithm for WBO, based on recent unsatisfiability-based algorithms for MaxSAT. Besides standard MaxSAT, the new algorithm can also be used to solve weighted MaxSAT and PBO, handling pseudo-Boolean constraints either natively or by translation to clausal form. Experimental results illustrate that unsatisfiability-based algorithms for MaxSAT can be orders of magnitude more efficient than existing dedicated algorithms. Finally, the paper illustrates how other algorithms for either PBO or MaxSAT can be extended to WBO.Comment: 14 pages, 2 algorithms, 3 tables, 1 figur
    corecore