237,797 research outputs found
A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation
Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. Informative, saturated linkage maps associated with well characterized populations segregating for anthocyanin pigmentation have not been developed. To investigate the genetic architecture conditioning anthocyanin pigmentation we scored root color visually, quantified root anthocyanin pigments by high performance liquid chromatography in segregating F2, F3 and F4 generations of a mapping population, mapped quantitative trait loci (QTL) onto a dense gene-derived single nucleotide polymorphism (SNP)-based linkage map, and performed comparative trait mapping with two unrelated populations. Results: Root pigmentation, scored visually as presence or absence of purple coloration, segregated in a pattern consistent with a two gene model in an F2, and progeny testing of F3-F4 families confirmed the proposed genetic model. Purple petiole pigmentation was conditioned by a single dominant gene that co-segregates with one of the genes conditioning root pigmentation. Root total pigment estimate (RTPE) was scored as the percentage of the root with purple color. Conclusions: This study generated the first high resolution gene-derived SNP-based linkage map in the Apiaceae. Two regions of chromosome 3 with co-localized QTL for all anthocyanin pigments and for RTPE, largely condition anthocyanin accumulation in carrot roots and leaves. Loci controlling root and petiole anthocyanin pigmentation differ across diverse carrot genetic backgrounds.Fil: Cavagnaro, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. University of Wisconsin; Estados Unidos. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias; ArgentinaFil: Iorizzo, Massimo. University of Wisconsin; Estados UnidosFil: Yildiz, Mehtap. Yuzuncu Yil University; TurquíaFil: Senalik, Douglas. University of Wisconsin; Estados UnidosFil: Parsons, Joshua. University of Wisconsin; Estados UnidosFil: Ellison, Shelby. University of Wisconsin; Estados UnidosFil: Simon, Philipp W.. University of Wisconsin; Estados Unido
High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa
Background: Rosaceae is a family containing many economically important fruit and ornamental species. Although fluorescence in situ hybridization (FISH)-based physical mapping of plant genomes is a valuable tool for map-based cloning, comparative genomics and evolutionary studies, no studies using high resolution physical mapping have been performed in this family. Previously we proved that physical mapping of single-copy genes as small as 1.1 kb is possible on mitotic metaphase chromosomes of Rosa wichurana using Tyramide-FISH. In this study we aimed to further improve the physical map of Rosa wichurana by applying high resolution FISH to pachytene chromosomes.
Results: Using high resolution Tyramide-FISH and multicolor Tyramide-FISH, 7 genes (1.7-3 kb) were successfully mapped on pachytene chromosomes 4 and 7 of Rosa wichurana. Additionally, by using multicolor Tyramide-FISH three closely located genes were simultaneously visualized on chromosome 7. A detailed map of heterochromatine/euchromatine patterns of chromosome 4 and 7 was developed with indication of the physical position of these 7 genes. Comparison of the gene order between Rosa wichurana and Fragaria vesca revealed a poor collinearity for chromosome 7, but a perfect collinearity for chromosome 4.
Conclusions: High resolution physical mapping of short probes on pachytene chromosomes of Rosa wichurana was successfully performed for the first time. Application of Tyramide-FISH on pachytene chromosomes allowed the mapping resolution to be increased up to 20 times compared to mitotic metaphase chromosomes. High resolution Tyramide-FISH and multicolor Tyramide-FISH might become useful tools for further physical mapping of single-copy genes and for the integration of physical and genetic maps of Rosa wichurana and other members of the Rosaceae
A database of orthologous exons in primates for comparative analysis of RNA-seq data
RNA-seq technology facilitates the study of gene expression at the level of individual exons and transcripts. Moreover, RNA-seq enables unbiased comparative analysis of expression levels across species. Such analyses typically start by mapping sequenced reads to the appropriate reference genome before comparing expression levels across species. However, this comparison requires prior knowledge of orthology at the exon level. With this in mind, I constructed a database of orthologous exons across three primate species (human, chimpanzee, and rhesus macaque). The database facilitates cross-species comparative analysis of exon- and transcript-level regulation. A web application allowing for an easy database query: http://giladlab.uchicago.edu/orthoExon
Development of a high-throughput system for phenotyping rice roots traits
A CIRAD project (Orytage) involving NARES and IRC partners aims at developing an international phenotyping network for rice adaptations to drought and thermal stresses in the context of gene discovery and genetic mapping. Root architecture is a key character for improving responses to these stresses. Identifying genes or QTLs that control root development and incorporating these loci in marker-aided selection programs is a promising strategy for the genetic improvement of root traits. However, high-quality phenotyping of a large numbers of individuals, which is necessary for precise gene mapping, remains the main bottleneck of this approach. We set up a high-throughput, low-cost, and precise methodology that allows analysis of root traits of hundreds of plants with limited measurement effort and without soil constraints. The "rhizoscope" system is based on the use of 2-D "nail board rhizoboxes" filled up with glass beads and bathed with aerated nutrient solution. The substrate permits one to study roots under uniform mechanical impedance, which can be manipulated by changing bead size. Growth is visualized in two dimensions and the measurement of multiple parameters such as root angle, number, length, and diameter is based on computer-aided analysis of digital images. The combination of 2-D boxes with glass beads simulates the soil conditions well enough to obtain relevant information, as demonstrated by our comparative studies in soil-filled tubes. Our disposition also maximizes differences among genotypes, making it an ideal system for QTL identification. Although initially developed for japonica rice, our rhizoscope system is generic and can be employed for phenotyping other plant species.(Texte intégral
Chromosome mapping of dragline silk genes in the genomes of widow spiders (araneae, theridiidae)
With its incredible strength and toughness, spider dragline silk is widely lauded for its impressive material properties. Dragline silk is composed of two structural proteins, MaSp1 and MaSp2, which are encoded by members of the spidroin gene family. While previous studies have characterized the genes that encode the constituent proteins of spider silks, nothing is known about the physical location of these genes. We determined karyotypes and sex chromosome organization for the widow spiders, Latrodectus hesperus and L. geometricus (Araneae, Theridiidae). We then used fluorescence in situ hybridization to map the genomic locations of the genes for the silk proteins that compose the remarkable spider dragline. These genes included three loci for the MaSp1 protein and the single locus for the MaSp2 protein. In addition, we mapped a MaSp1 pseudogene. All the MaSp1 gene copies and pseudogene localized to a single chromosomal region while MaSp2 was located on a different chromosome of L. hesperus. Using probes derived from L. hesperus, we comparatively mapped all three MaSp1 loci to a single region of a L. geometricus chromosome. As with L. hesperus, MaSp2 was found on a separate L. geometricus chromosome, thus again unlinked to the MaSp1 loci. These results indicate orthology of the corresponding chromosomal regions in the two widow genomes. Moreover, the occurrence of multiple MaSp1 loci in a conserved gene cluster across species suggests that MaSp1 proliferated by tandem duplication in a common ancestor of L. geometricus and L. hesperus. Unequal crossover events during recombination could have given rise to the gene copies and could also maintain sequence similarity among gene copies over time. Further comparative mapping with taxa of increasing divergence from Latrodectus will pinpoint when the MaSp1 duplication events occurred and the phylogenetic distribution of silk gene linkage patterns. © 2010 Zhao et al
Identification of novel amplification gene targets in mouse and human breast cancer at a syntenic cluster mapping to mouse identification of novel amplification gene targets in mouse and human breast cancer at a syntenic cluster mapping to mouse ch8a1 and human ch13q34
Serial analysis of gene expression from aggressive mammary tumors derived from transplantable p53 null mouse mammary outgrowth lines revealed significant up-regulation of Tfdp1 (transcription factor Dp1), Lamp1 (lysosomal membrane glycoprotein 1) and Gas6 (growth arrest specific 6) transcripts. All of these genes belong to the same linkage cluster, mapping to mouse chromosome band 8A1. BAC-array comparative genomic hybridization and fluorescence in situ hybridization analyses revealed genomic amplification at mouse region ch8A1.1. The minimal region of amplification contained genes Cul4a, Lamp1, Tfdp1, and Gas6, highly overexpressed in the p53 null mammary outgrowth lines at preneoplastic stages, and in all its derived tumors. The same amplification was also observed in spontaneous p53 null mammary tumors. Interestingly, this region is homologous to human chromosome 13q34, and some of the same genes were previously observed amplified in human carcinomas. Thus, we further investigated the occurrence and frequency of gene amplification affecting genes mapping to ch13q34 in human breast cancer. TFDP1 showed the highest frequency of amplification affecting 31% of 74 breast carcinomas analyzed. Statistically significant positive correlation was observed for the amplification of CUL4A, LAMP1, TFDP1, and GAS6 genes (P < 0.001). Meta-analysis of publicly available gene expression data sets showed a strong association between the high expression of TFDP1 and decreased overall survival (P = 0.00004), relapse-free survival (P = 0.0119), and metastasis-free interval (P = 0.0064). In conclusion, our findings suggest that CUL4A, LAMP1, TFDP1, and GAS6 are targets for overexpression and amplification in breast cancers. Therefore, overexpression of these genes and, in particular, TFDP1 might be of relevance in the development and/or progression in a significant subset of human breastFil: Abba, Martín Carlos. University of Texas; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fabris, Victoria Teresa. University of Texas; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Hu, Yuhui. University of Texas; Estados UnidosFil: Kittrell, Frances S.. Baylor College of Medicine; Estados Unidos. University of Texas; Estados UnidosFil: Cai, Wei Wen. University of Texas; Estados Unidos. Baylor College of Medicine; Estados UnidosFil: Donehower, Lawrence A.. University of Texas; Estados UnidosFil: Sahin, Aysegui. University of Texas; Estados UnidosFil: Medina, Daniel. University of Texas; Estados Unidos. Baylor College of Medicine; Estados UnidosFil: Aldaz, Claudio Marcelo. University of Texas; Estados Unido
Homologies in human and Macasa fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries
We established chromosomal homologies between all chromosomes of the human karyotype and that of an old world monkey (Macaca fuscata) by chromosomal in situ suppression (CISS) hybridization with human chromosome specific DNA libraries. Except for the human chromosome 2 library and limited cross-hybridization of X and Y chromosome libraries all human DNA libraries hybridized to single GTG-banded macaque chromosomes. Only three macaque chromosomes (2, 7, 13) were each hybridized by two separate human libraries (7 and 21, 14 and 15, 20 and 22 respectively). Thus, an unequivocally high degree of synteny between human and macaque chromosomes has been maintained for more than 20 million years. As previously suggested, both Papionini (macaques, baboons, mandrills and cercocebus monkeys, all of which have nearly identical karyotypes) and humans are chromosomally conservative. The results suggest, that CISS hybridization can be expected to become an indispensable tool in comparative chromosome and gene mapping and will help clarify chromosomal phylogenies with speed and accuracy
Functional analysis and transcriptional output of the Göttingen minipig genome
In the past decade the Göttingen minipig has gained increasing recognition as animal model in pharmaceutical and safety research because it recapitulates many aspects of human physiology and metabolism. Genome-based comparison of drug targets together with quantitative tissue expression analysis allows rational prediction of pharmacology and cross-reactivity of human drugs in animal models thereby improving drug attrition which is an important challenge in the process of drug development.; Here we present a new chromosome level based version of the Göttingen minipig genome together with a comparative transcriptional analysis of tissues with pharmaceutical relevance as basis for translational research. We relied on mapping and assembly of WGS (whole-genome-shotgun sequencing) derived reads to the reference genome of the Duroc pig and predict 19,228 human orthologous protein-coding genes. Genome-based prediction of the sequence of human drug targets enables the prediction of drug cross-reactivity based on conservation of binding sites. We further support the finding that the genome of Sus scrofa contains about ten-times less pseudogenized genes compared to other vertebrates. Among the functional human orthologs of these minipig pseudogenes we found HEPN1, a putative tumor suppressor gene. The genomes of Sus scrofa, the Tibetan boar, the African Bushpig, and the Warthog show sequence conservation of all inactivating HEPN1 mutations suggesting disruption before the evolutionary split of these pig species. We identify 133 Sus scrofa specific, conserved long non-coding RNAs (lncRNAs) in the minipig genome and show that these transcripts are highly conserved in the African pigs and the Tibetan boar suggesting functional significance. Using a new minipig specific microarray we show high conservation of gene expression signatures in 13 tissues with biomedical relevance between humans and adult minipigs. We underline this relationship for minipig and human liver where we could demonstrate similar expression levels for most phase I drug-metabolizing enzymes. Higher expression levels and metabolic activities were found for FMO1, AKR/CRs and for phase II drug metabolizing enzymes in minipig as compared to human. The variability of gene expression in equivalent human and minipig tissues is considerably higher in minipig organs, which is important for study design in case a human target belongs to this variable category in the minipig. The first analysis of gene expression in multiple tissues during development from young to adult shows that the majority of transcriptional programs are concluded four weeks after birth. This finding is in line with the advanced state of human postnatal organ development at comparative age categories and further supports the minipig as model for pediatric drug safety studies.; Genome based assessment of sequence conservation combined with gene expression data in several tissues improves the translational value of the minipig for human drug development. The genome and gene expression data presented here are important resources for researchers using the minipig as model for biomedical research or commercial breeding. Potential impact of our data for comparative genomics, translational research, and experimental medicine are discussed
Meta-analysis of RNA-seq expression data across species, tissues and studies.
BackgroundDifferences in gene expression drive phenotypic differences between species, yet major organs and tissues generally have conserved gene expression programs. Several comparative transcriptomic studies have observed greater similarity in gene expression between homologous tissues from different vertebrate species than between diverse tissues of the same species. However, a recent study by Lin and colleagues reached the opposite conclusion. These studies differed in the species and tissues analyzed, and in technical details of library preparation, sequencing, read mapping, normalization, gene sets, and clustering methods.ResultsTo better understand gene expression evolution we reanalyzed data from four studies, including that of Lin, encompassing 6-13 tissues each from 11 vertebrate species using standardized mapping, normalization, and clustering methods. An analysis of independent data showed that the set of tissues chosen by Lin et al. were more similar to each other than those analyzed by previous studies. Comparing expression in five common tissues from the four studies, we observed that samples clustered exclusively by tissue rather than by species or study, supporting conservation of organ physiology in mammals. Furthermore, inter-study distances between homologous tissues were generally less than intra-study distances among different tissues, enabling informative meta-analyses. Notably, when comparing expression divergence of tissues over time to expression variation across 51 human GTEx tissues, we could accurately predict the clustering of expression for arbitrary pairs of tissues and species.ConclusionsThese results provide a framework for the design of future evolutionary studies of gene expression and demonstrate the utility of comparing RNA-seq data across studies
- …
