2 research outputs found

    An Optical Model for Translucent Volume Rendering and Its Implementation Using the Preintegrated Shear-Warp Algorithm

    Get PDF
    In order to efficiently and effectively reconstruct 3D medical images and clearly display the detailed information of inner structures and the inner hidden interfaces between different media, an Improved Volume Rendering Optical Model (IVROM) for medical translucent volume rendering and its implementation using the preintegrated Shear-Warp Volume Rendering algorithm are proposed in this paper, which can be readily applied on a commodity PC. Based on the classical absorption and emission model, effects of volumetric shadows and direct and indirect scattering are also considered in the proposed model IVROM. Moreover, the implementation of the Improved Translucent Volume Rendering Method (ITVRM) integrating the IVROM model, Shear-Warp and preintegrated volume rendering algorithm is described, in which the aliasing and staircase effects resulting from under-sampling in Shear-Warp, are avoided by the preintegrated volume rendering technique. This study demonstrates the superiority of the proposed method

    CAVASS: A Computer-Assisted Visualization and Analysis Software System

    Get PDF
    The Medical Image Processing Group at the University of Pennsylvania has been developing (and distributing with source code) medical image analysis and visualization software systems for a long period of time. Our most recent system, 3DVIEWNIX, was first released in 1993. Since that time, a number of significant advancements have taken place with regard to computer platforms and operating systems, networking capability, the rise of parallel processing standards, and the development of open-source toolkits. The development of CAVASS by our group is the next generation of 3DVIEWNIX. CAVASS will be freely available and open source, and it is integrated with toolkits such as Insight Toolkit and Visualization Toolkit. CAVASS runs on Windows, Unix, Linux, and Mac but shares a single code base. Rather than requiring expensive multiprocessor systems, it seamlessly provides for parallel processing via inexpensive clusters of work stations for more time-consuming algorithms. Most importantly, CAVASS is directed at the visualization, processing, and analysis of 3-dimensional and higher-dimensional medical imagery, so support for digital imaging and communication in medicine data and the efficient implementation of algorithms is given paramount importance
    corecore