482,191 research outputs found

    Efficient Analysis of Pattern and Association Rule Mining Approaches

    Full text link
    The process of data mining produces various patterns from a given data source. The most recognized data mining tasks are the process of discovering frequent itemsets, frequent sequential patterns, frequent sequential rules and frequent association rules. Numerous efficient algorithms have been proposed to do the above processes. Frequent pattern mining has been a focused topic in data mining research with a good number of references in literature and for that reason an important progress has been made, varying from performant algorithms for frequent itemset mining in transaction databases to complex algorithms, such as sequential pattern mining, structured pattern mining, correlation mining. Association Rule mining (ARM) is one of the utmost current data mining techniques designed to group objects together from large databases aiming to extract the interesting correlation and relation among huge amount of data. In this article, we provide a brief review and analysis of the current status of frequent pattern mining and discuss some promising research directions. Additionally, this paper includes a comparative study between the performance of the described approaches.Comment: 14 pages, 3 figures. arXiv admin note: text overlap with arXiv:1312.4800; and with arXiv:1109.2427 by other author

    Use of Articulated Transport Systems in the Mining Industry

    Get PDF
    The work is devoted to the possibility and prospects of the use of all-wheels drive articulated transport systems in the mining complex. A comparative analysis of the traditional methods of exporting minerals in open pit mining and the method of using active trailed elements are given. The trailer has a load factor several times higher than the same rate for mining dump trucks. The use of an active trailer makes it possible to reduce the mass of the tractor and trailer by almost 40 tons and increase the specific power of the road train. © Published under licence by IOP Publishing Ltd

    Comparative Analysis of Data Mining Classification Algorithms in Type-2 Diabetes Prediction Data Using WEKA Approach

    Full text link
    The goal of this paper discusses about different types of data mining classification algorithms accuracies that are widely used to extract significant knowledge from huge amounts of data. Here illustrate 20 classifications of supervised data mining algorithms base on type-2 diabetes disease dataset perspective to Bangladeshi populations. In this paper we compare 20 classification algorithms by measuring accuracies, speed and robustness of those algorithms using WEKA toolkit version 3.6.5. Accuracies of classification algorithms are measured in 3 cases like Total Training data set, 10 fold Cross Validation and Percentage Split (66% taken). Speed (CPU Execution Time) and error rate also measured as like as accuracy. Firstly checked top perform algorithms that have best outcome for different cases and then ranked top outcomes algorithms. Finally ranked best 5 algorithms among 20 algorithms based on their accuracies
    corecore